
Neuro-Percolation as a Superposition of 

Random-Walks  

Gaetano L. Aiello 

Universita’ di Palermo ­ Dipartimento di Fisica e Chimica 

Viale delle Scienze, Ed. 18, 90128, Palermo ­ Italy 

Abstract. Axons of pioneers neurons are actively directed towards their targets by 

signaling molecules. The result is a highly stereotyped axonal trajectory. The tip of 

the axon appears to proceed erratically, which has favored models of axon 

guidance as random-walk processes. In reality, axon guidance is basically a 

deterministic process, although largely unknown. Random-walk models assume 

noise as a representation of what is actually unknown. Wadsworth's guidance  

gives an experimental account of the axonal bending as induced by 

addition/subtraction of specific guidance agents. The axonal trajectory, however, is 

not a simple random-walk but a series of Wiener-Lévy stochastic processes.  

1 Introduction 

Axon guidance has been drawing the attention of researchers for almost half a century 

[1-4]. The wonders of cytoskeleton dynamics and its exquisite mechanism of control 

have been revealed in all details, from the discovery of the signaling mechanism to 

the gene's controlled response of the growth cone. Table 1 summarizes the most 

studied molecules, known as "the canonical four". 

                                                          

                                          

Name / Type Action Receptors / Type 

Semaphorins / Proteins Deflective Plexins/Transmembrane  

Netrins / Secreted  proteins Attractive DCC / Gene 

Slits / proteins Repulsive Transmembrane  

Ephrins / bound proteins Repulsive Eph / Membrane-bound  

                                       

                                         Table 1: Signaling Molecules Family 

 

Signaling molecules interact with the growth cone, directing axonal growth. The 

action of a molecule, however, may differ from that listed, e.g., an attractive one may 

become unresponsive, or even change its action to repulsive, depending on "where" 

the growth cone happens to be and "when". Table 1 lists the most likely action. In 

reality signaling molecules are multifunctional. The mechanism underlying this  

behavior is still obscure, to the point the outcome of a signaling event is essentially 

unpredictable [2]. The growth cone is like a vessel navigating across a landscape set 

with conspicuous points, which appear "out of the box", and with uncertain 

directional cues. A relatively small number of molecules with fixed action would also 

be capable of directing a large number of axons to their selected partners, but the 

result would be a sort of rigid scaffold of connections with a relatively few synapses, 

107

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



because destinations outside the scaffold would not be allowed. In contrast, few 

multifunctional cues, cooperating in time, would yield an almost  infinite possible 

destinations. That's exactly what happens in an infant's brain [5]: by age 2 a child's 

brain has a staggering number of synapses, about one hundred trillion. Half of them 

will be pared back and the remaining reinforced as age progresses. Hyperconnectivity 

allows plenty of distinct ways of pruning that one-half, each way uniquely shaping the 

brain. Multi-functionality is thus at the very base of our own uniqueness. A 

percolation model of axon guidance is able to mimic the complexity of multi-

functionality by portraying the growth cone as navigating across a time-varying 

landscape, with guidance cues that potentially allow for an almost unrestricted 

number of destinations. 

 

2  Percolation on a time-varying landscape 

The term "percolation" refers to classical models in cluster theory [6-7] referring to 

the seeping of a fluid through soils of different permeability. A percolation-based 

model deals with a discrete-type system, featuring "allowed" and "forbidden" sites 

randomly distributed, yet a system that can be harnessed to a point it can be controlled 

by a single parameter, the site occupational probability. In a 2-dimensional case the 

occupational probability determines the formation of clusters. At a critical value of 

probability a single, weakly connected cluster remains - the "spanning cluster"- one 

that barely touches the edges of the lattice. Percolating paths within the spanning 

cluster are reduced to a minimum. The spanning cluster is prone to disruption: a 

minimal change in the spatial configuration can lead to its disappearance. The critical 

probability is thus evaluated through repeated trials, each dealing with different 

configurations of "allowed" (or "forbidden") sites. The procedure is then iterated for 

different values of the occupational probability until the critical value is found. In 

conclusion, a percolation model becomes useful provided that a large number of 

distinct distributions of "allowed" (or "forbidden") sites are tested. Spanning 

trajectories are by no means unique in shape. In our model, a time-varying landscape 

is the premise. The landscape is framed in a 2D rectangular lattice of height h and 

indefinite width, set with guidance cues allowing any possible percolating trajectory. 

At each site the growth cone is given the same options about the next move, namely: 

to go to Right (with probability pR), or Left (with probability pL), or Down (with 

probability pD). Upwards moves are negated. The growth cone moves as in response 

to signals from a multifunctional cue nearby, which may tell to "turn-Right", but also 
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the opposite, to "turn-Left", or let it free to follow the natural bias, in which case the 

growth cone proceeds undisturbed Down.  

 

          

             Fig.1.  Percolating trajectory. Time-length T=74, net displacement x=+3. 

 

Fig. 1 shows a computer-generated trajectory "percolating" to the bottom line.   The 

trajectory may be thought as the result of precise, specific sequence of commands, 

like "DDRDDDRLDRL...", the size of the string being the "spanning time" T. One 

may even imagine to actually reveal the guidance cues responsible for the sequence, 

for example, by iterating the navigation from the same departing point, as it would 

mimic the sprouting of new axons travelling across an unchanged medium. The result 

would be a bundle of trajectories, ending to different points. That's because signaling 

events are not necessarily the same in each trial, but vary according with some hidden 

dynamics. Given the fractal nature of the medium, a small, local variation   would 

make the ending point unpredictable. Such behavior is typical of deterministic chaos, 

the initial conditions of the landscape being the states of all the cues at a given time. 

 

3 Law of motion and probability 

The motion of the growth cone is a combination of a monotonic descent (D) 

interrupted by stops (R, L), and a succession of random lateral moves (R, L) 

intertwined with stops (D). The spanning time T is the sum of all the moves. There 

will be the same number of D's in any percolating trajectory, in our case 31. The sum 

pR=pL=pD=1/3                                                
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of all sideways moves depends on the trajectory. At any t the net displacement is the 

difference between all R's and all L's, i.e., x(t)=mRmL. Fig 2 (left) is a plot of x(t) for 

the trajectory in Fig.1. The stops do not affect the displacement, thus they can be 

eliminated. Fig.2 (right) is the plot of x(t) without stops. 

  

Fig. 2.  x-axis notion for the trajectory in Fig.1, with (left) and without (right).stops. 

 

  

The reduced spanning time is M=43, sum of 23 R's and 20 L's, the net final 

displacement is x(M)=mRmL=2320=3. The probability of a trajectory's percolating 

at exactly x(M)=3, can be calculated with the binomial formula on account that any 

sequence of 23 R's and 20 L's, in whatever order, will yield the same net 

displacement. In the binomial formula, however, there are only two events, with 

probabilities p and q=1p, while in our case there are three. Elimination of D's does 

not affect x(M), but it affects the probabilistic space. The values of pR, pL, pD must be 

adjusted in order to comply with the change as follows:  

R L
R L

R L R L

p p
p =  ;  p =

p + p p + p
 p q  

where p+q=1, pR/pL=p/q=r.  With pR and pL so transformed, the binomial formula 

yields P{x(M)=3}=0.1092. Any other trajectory with the same M is described by the 

same probability distribution. It follows that all trajectories with the same M are 

samples of the same stochastic process, namely, a Wiener-Lévi's. After replacing x 

with =x/2, and M with K=M/2, the probability of a trajectory ending to  can be 

written in a more convenient form as:  

 
 

   
2k k+ξ

k

2k !
P ξ = q r  ; ξ = -K, -K +1,..., k -1, K

k + ξ ! k - ξ !
 

 

4 Method and Results 

 

Navigation in a time-varying landscape was implemented with a computer program 

where pR and pL are entered as parameters.. An interval was partitioned in three 
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Fig. 3 - Experimental results (bullets) for pR=pL=1/6, pD=2/3. The histogram is peaked 

at =0, with a value 0.1037. For comparison, a binomial distribution (solid line) with 

M=58, r=1 is superimposed, the binomial peak at =0 being 0.1043. 

 

segments, the relative length of each was taken as a probability. Another program was 

also created for implementing a binomial distribution, with M and r=p/q as 

parameters. Navigation was iterated one million times, each trial yielding a trajectory 

departing from the same point and ending somewhere on the -axis. 

 Fig.3 shows the probability distribution H() in the case pR=pL=1/6, pD=2/3. In 

order to compare H() with a binomial distribution, the value of M was sought by 

equating the peaks of both distribution, which yields M58. As shown in Fig. 3 a 

Binomial with M=58, r=1 is indeed a close fit to the histogram. 

 

 

5 Analysis 

 

The close matching shown in Fig. 3 is somewhat surprising as the spanning times of 

the trajectories are not all the same. M is itself distributed among the trajectories with 

values M1, M2,..Mn, N1 trajectories with the same M1, N2 with the same M2, and so 

on. Each group of Nk trajectories with the same Mk belong to the same Binomial, 

therefore there are n different binomial distributions (with the same r=1) hidden in 

H(). The probability of finding M=Mk is Nk/N. Thus, the contribution on the n 

Binomials to the histogram is:   

     
k

n n

k M k
k,1 k,1

P ;H 1     
 

with k= Nk/N.  All Binomials are peaked at =0, as r=1 for all of them. They are 

"coherent", all peaked at =0, thus the sum is also a Binomial peaked at =0. 
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Coherence explains the close match in Fig. 3.  When r1, however, the sum can no 

longer be equated to a single Binomial. All the binomial components have the same r, 

but they are peaked at different values of . They are "incoherent". Thus, (t) is not a 

single  random-walk but  a superposition of random-walks: 

   
n

k k

k,1

ξ t = α ξ t  

The range of t in (t) extends up to the maximum value of M, as it includes all 

subranges of the stochastic components. Thus, depending on t, some components can 

be out of range, therefore their contributions are null. Thus, the mean <(t)> depends 

on t. Even though a superposition of stationary processes (t) is non-stationary in 

strict-sense, which is another way to say (t) is not a Wiener-Lévy process. 

 

 

6 Conclusions 

 

Neuro-percolation is in perfect tune with Wadsworth's findings [4]. The directional 

bias induced by the loss of specific cues is modelled by a change in the ratio r= pR/pL, 

where r=1 means all directional cues compensate for each other, and no directional 

bias results. The trajectory of the growth cone is indeed "a succession of randomly 

directed movements" - as in the percolation model - but it is not a random-walk. The 

note is more than mere mathematical finesse. A superposition of random-walks is 

closer to the actual motion of the growth cone than a single random-walk.  In the 

percolation model, the spanning time is considered essentially unpredictable. There is 

no biological evidence the growth cone should complete its trajectories all in the same 

time, as this would imply a variable rate of outgrowth: the more tortuous the 

trajectory the higher the outgrowing, which is hard to sustain. Rather, it is more 

realistic to assume the outgrowth's rate to be a constant, as result of an identical 

underlying biological process.  
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