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Abstract. Least Square Support Vector Machines (LSSVMs) are an
alternative to SVMs because the training process for LSSVMs is based
on solving a linear equation system while the training process for SVMs
relies on solving a quadratic programming optimization problem. Despite
solving a linear system is easier than solving a quadratic programming
optimization problem, the absence of sparsity in the Lagrange multiplier
vector obtained after training a LSSVM model is an important drawback.
To overcome this drawback, we present a new approach for sparse LSSVM
called Optimally Pruned LSSVM (OP-LSSVM). Our proposal is based
on a ranking method, named Multiresponse Sparse Regression (MRSR),
which is used to sort the patterns in terms of relevance. After that, the
leave-one-out (LOO) criterion is also used in order to select an appropri-
ate number of support vectors. Our proposal was inspired by a recent
methodology called OP-ELM, which prunes hidden neurons of Extreme
Learning Machines. Therefore, in this paper, we put LSSVM and MRSR
to work together in order to achieve sparse classifiers, as well as one can see
that we achieved equivalent (or even superior) performance for real-world
classification tasks.

1 Introduction

Large margin classifiers such as Support Vector Machines (SVMs) and Least
Squares SVMs (LSSVMs) have been used to handle classification tasks after
being introduced by Vapnik and Suykens [1, 2]. A theoretical advantage of
large margin classifiers is the empirical and structural risk minimization which
balances the complexity of the model against its success at fitting the training
data. Besides that, SVMs are able to produce sparse solutions [3]. By sparseness
we mean that the decision surface, i.e, a hyperplane in the feature space built
by the induced model (classifier or regressor) depends only on a relatively small
number of input examples, the so-called support vectors (SVs).

The LSSVM is an alternative to the standard SVM formulation, since the
solution for LSSVM is achieved by solving the linear systems resulting from
the optimality conditions that appear from minimizing the primal optimization
problem in a least square sense [2]. Therefore, the solution follows directly from
solving a linear equation system, instead of solving a quadratic optimization
(programming) problem (QP problem). On the one hand, in general, it is less
computationally intensive to solve a linear system than a QP problem, since we
only need to be able to compute the inverse of a matrix. On the other hand, the
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resulting solution is too far from sparse so that it is common to have all training
samples being used as support vectors. To handle the lack of sparseness in
LSSVM classifiers, several reduced set and pruning methods have been proposed.
These methods comprise a bunch of techniques which aims at simplifying the
internal structure of LSSVM classifiers, while keeping the decision boundaries
as similar as possible to the original ones [4, 5].

To overcome this drawback, we present a new approach for sparse LSSVM
called Optimally Pruned LSSVM (OP-LSSVM) based on a ranking method,
named Multiresponse Sparse Regression (MRSR), which is used to sort the pat-
terns in terms of relevance and, after that, we use the leave-one-out (LOO)
criterion in order to select an appropriate number of support vectors.

In the next section, the LSSVM for classification is presented. Section 3
presents the Multiresponse Sparse Regression; as well as in Section IV, we present
our proposal. In Section 4, we present some simulations we carried out, as well
as some discussion about the results. At last, we present the conclusion in
Section 6.

2 Least Square Support Vector Machines

Consider a training data set {xi, yi}Li=1, so that xi ∈ Rp is an input vector and
yi ∈ {−1,+1} are the corresponding class labels. For classification tasks, the
primal problem formulation for LSSVM [2] is given by

min
w,ξi,b

{
1

2
wTw + γ

1

2

L∑
i=1

ξ2i

}
subject to yi[(w

Txi) + b] = 1− ξi, (1)

where b is the bias, γ is a positive regularization parameter and {ξi}Li=1 are the
slack variables. By rearranging the Eq. (1), the Lagrangian function is achieved

L(w, b, ξ,α) =
1

2
wTw + γ

1

2

L∑
i=1

ξ2i −
L∑
i=1

αi(yi(x
T
i w + b)− 1 + ξi), (2)

where {αi}Li=1 are the Lagrange multipliers.
In order to solve the problem, this Lagrangian function must be optimized

with respect to w, b, αi and ξi. Therefore, we need to compute the following
differentiations

∂L(w,b,ξ,α)
∂w = 0,

∂L(w,b,ξ,α)
∂b = 0

∂L(w,b,ξ,α)
∂αi

= 0 and
∂L(w,b,ξ,α)

∂ξi
= 0,

resulting on

w =
∑L
i=1 αiyixi,

∑L
i=1 αiyi = 0, yi(x

T
i w + b)− 1 + ξi = 0 and αi = γξi,

respectively. Thus, based on such achievements, one can formulate a linear
system in order to represent the classification problem as

Dz = l, (3)
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where

D =

[
0 yT

y Ω + γ−1I

]
, z =

[
b
α

]
and l =

[
0
1

]
. (4)

Moreover, I is the identity matrix of size L, the symbol 1 denotes a L-dimensional
vector of ones and Ωi,j = yiyjxi

Txj , where i, j = 1, . . . , L.
The solution z for the linear system can be obtained by least squares such as

z = D−1l. (5)

and then with the Lagrange multipliers and the bias in the solution z, one can
compute the output for classification problems by

f(x) = sign

(
l∑
i=1

αiyix
Txi + b

)
. (6)

It is worthy emphasizing that whenever a Lagrange multiplier αi is zero, we
do not have to keep the associated input vector xi on hand for future usage, see
Eq. (6). It is also straightforward the usage of the kernel trick, which is applied
to generate non-linear versions of the standard linear SVM classifier. One can
do that by replacing the dot product xTxi presented in Eq. (6), as well as in the
calculation of Ωi,j with the kernel function k(x,xi).

3 Multiresponse Sparse Regression

Consider the approximation of the linear system presented in Eq. (3) as

Dzk = lk (7)

where, in terms of the multiresponse sparse regression (MRSR), D is the re-
gressor matrix, zk is the weight matrix (solution for the linear system) and, of
course, lk is the k-th approximation of l. The matrix zk is updated by

zk+1 = (1− βk)zk + βkz̄k+1, (8)

where βk is the step size at k-th iteration so that

βk = min{β|βk ≥ 0 and β ∈ Γi for some j /∈ A}, (9)

Γi is the set

Γi =

{
ckmax + sT (l− lk)Tdj

ckmax + sT (̄lk+1 − lk)Tdj

}
, (10)

and ckmax is the maximum cumulative correlation (i.e., ckmax = maxj
{
ck
}

, such
that ck = ||(l − lk)Tdj ||) from the set of regressors that satisfy the maximum
A = {j|ckj = ckmax}. Note that dj is the i-th column of D.

In a nutshell, the idea behind the MRSR is to have, at the beginning, the
matrix zk with zero values and then to add a new nonzero row at each new step.
Therefore, the weight matrix has k nonzero rows at k-th step of the MRSR.
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As each row is added one after another, the sequence formed represents the
rank of rows. The row to be added is chosen by computing the cumulative
correlation between the regressor (the vector dj |j 6∈ A) and the current residuals
(the difference l − lk). As the linear system output is a vector, the MRSR
coincides with the LARS algorithm [6]. In fact, MRSR is an extension of
LARS. More details about MRSR can be found in [7].

4 Our Proposal: Optimally Pruned LSSVM

In this section our proposal called Optimally Pruned LSSVM (OP-LSSVM) is
presented. In a nutshell, our proposal relies on three main steps. The first step
is to build the matrix Ω + γ−1I from the data, as explained in the Eq. (4). The
second one is to rank columns of D (which also means to rank patterns) by
MRSR in order to obtain the most relevant columns. After that, the last step
is the leave one-out optimization so that the best set of columns is achieved.
The main idea is to leave the less important columns (patterns) out of the
solution by eliminating such columns with low rank from the matrix D and then
solving the problem by the pseudo-inverse. We highlight that the rows of D
also associated with a certain pattern are not removed, because its elimination
would lead to a loss of labeling information and in performance [8]. At this
point, it is worth emphasizing that our proposal results from bringing the idea of
ranking hidden neurons to prune ELMs proposed in [9] to LSSVMs, but ranking
patterns. Despite the MRSR ranks the rows, we can use the row ranking as
column ranking since the i-th row equals the i-th column (i.e., DT = D). After
ranking the patterns, the decision for the best set of support vectors in the model
is taken by LOO validation method. In order to speed up the computation of
LOO, the PRESS Statistic was used. More details can be found in [10].

At last, the Lagrange multipliers and bias are calculated in order to obtain the
final model. We highlight that our proposal is inspired by a recent methodology,
called OP-ELM, proposed to prune hidden layer neurons in Extreme Learning
Machines (ELM) [9].

We present the proposed algorithm for OP-LSSVM below.

OP-LSSVM(D, l)

D � matrix build from the data
l � vector of LSSVM linear system

1 r← Ranking-By-MRSR(D) � Column Ranking
2 s← Selecting-By-LOO(D, r) � Column Set
3 D∗ ← Prune(D, s) � Non-square matrix
4 z = (DT

∗ D∗)−1DT
∗ l � pseudo-inverse solution

5 return z � Lagrange multipliers and the bias

5 Simulations and Discussion

The results for some simulations carried out are presented in this section. From
the total, two-thirds of the data examples were randomly selected for training
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Dataset HAB PCV DER BCW DIA RIP

Samples 306 310 366 699 768 1250
Training 201 204 241 461 506 825
Test 105 106 125 238 262 425
Variables 3 6 34 9 8 2

Table 1: Data sets used in our simulations.

purposes and so the remaining (one-third) of the examples were used for assessing
the classifiers’ generalization performances. Tests with real-world benchmarking
datasets were also evaluated in this work. We used six datasets: Haberman
(HAB), Pathologies of Vertebral Column (PVC), Dermatology (DER), Breast
Cancer Wisconsin (BCW), Diabetes (DIA) and Ripley (RIP) from UCI Machine
Learning Repository. Some information about the datasets is shown in Table 1.
Since some datasets we are dealing with are not binary, we transform some of
them into two-class problems for LSSVMs, such as PVC (normal or pathological
individuals), DER (individuals with psoriasis or not).

Classifier HAB PCV DER BCW DIA RIP

SVM

ACC 72.4 ± 3.3 87.1 ± 2.6 99.9 ± 0.3 96.4 ± 1.0 76.9 ± 2.3 88.0 ± 1.4

#SVs 97.4 ± 6.9 53.3 ± 6.3 22.9 ± 4.2 39.5 ± 10.9 240.4 ± 14.4 226.6 ± 36.5

Time 9.6e+2±1.4e+3 2.5e+2±4.7e+2 9.6e-1±2.5e-1 2.3e+2±6.2e+2 6.0e+3±8.6e+3 3.9e+2±9.2e+2

LSSVM

ACC 73.7 ± 3.2 83.5 ± 4.0 99.7 ± 0.5 96.1 ± 1.1 76.8 ± 2.1 87.9 ± 1.0

#SVs 201.0 ± 0.0 204.0 ± 0.0 241.0 ± 0.0 461.0 ± 0.0 506.0 ± 0.0 825.0 ± 0.0

Time 6.6e+0±1.3e+0 5.6e+0±1.5e+0 8.0e+0±2.0e+0 4.0e+1±9.1e+0 4.7e+1±7.8e+0 1.4e+2±1.8e+1

IP-LSSVM10%

ACC 70.6 ± 5.7 76.3 ± 6.4 99.2 ± 1.3 96.6 ± 0.8 73.5 ± 3.3 87.5 ± 2.3

#SVs 181.0 ± 0.0 184.0 ± 0.0 217.0 ± 0.0 415.0 ± 0.0 455.0 ± 0.0 742.0 ± 0.0

Time 5.8e+0±2.4e+0 5.2e+0±2.2e+0 8.6e+0±3.5e+0 3.4e+1±8.4e+0 4.3e+1±1.1e+1 1.3e+2±2.0e+1

IP-LSSVM20%

ACC 62.9 ± 9.1 67.9 ± 13.3 98.9 ± 1.7 96.8 ± 1.0 69.1 ± 10.0 87.2 ± 1.8

#SVs 161.0 ± 0.0 163.0 ± 0.0 193.0 ± 0.0 369.0 ± 0.0 405.0 ± 0.0 660.0 ± 0.0

Time 5.3e+0±1.4e+0 4.7e+0±1.6e+0 7.8e+0±3.0e+0 3.6e+1±7.7e+0 4.5e+1±1.3e+1 1.4e+2±2.2e+1

IP-LSSVM30%

ACC 60.2 ± 11.5 65.5 ± 15.6 98.6 ± 2.8 97.0 ± 1.0 53.1 ± 14.4 86.7 ± 1.6

#SVs 141.0 ± 0.0 143.0 ± 0.0 169.0 ± 0.0 323.0 ± 0.0 354.0 ± 0.0 577.0 ± 0.0

Time 4.6e+0±1.7e+0 5.2e+0±1.9e+0 7.4e+0±2.8e+0 3.2e+1±8.4e+0 4.0e+1±1.1e+1 1.2e+2±1.4e+1

P-LSSVM

ACC 72.2 ± 3.8 85.7 ± 3.0 98.5 ± 1.8 95.6 ± 2.5 76.1 ± 2.4 87.3 ± 2.1

#SVs 106.5 ± 19.1 131.7 ± 54.0 39.0 ± 58.1 38.7 ± 9.5 273.2 ± 59.8 224.9 ± 17.0

Time 3.5e+1±8.5e+0 2.4e+1±2.0e+1 5.5e+1±1.8e+1 2.4e+2±2.9e+1 2.9e+2±8.0e+1 1.3e+3±1.1e+2

OP-LSSVM

ACC 74.2 ± 3.1 83.9 ± 3.0 99.7 ± 0.5 95.8 ± 0.9 76.4 ± 2.6 88.0 ± 1.3

#SVs 83.0 ± 16.7 78.6 ± 12.8 89.8 ± 10.1 83.6 ± 13.0 82.8 ± 14.5 80.6 ± 17.8

Time 1.4e+2±1.0e+2 1.3e+2±6.7e+1 1.6e+2±8.3e+1 5.8e+2±2.9e+2 6.5e+2±2.7e+2 1.6e+3±6.5e+2

Table 2: Accuracy and standard deviation after 30 independent runs. The time
is present in seconds.

In Table 2, we present accuracy, average number of SVs (#SVs) and training
time (Time) for aforementioned methodology on testing set averaged over 30
independent runs for SVM [11], LSSVM[2], P-LSSVM[4], IP-LSSVM [5] and our
proposal (OP-LSSVM).

The classifier parameters were tuned by applying grid search with a 10-fold
cross-validation over the training dataset, in which the regularization parameter
γ for LSSVM was chosen from the interval [2−5, 212]. For IP-LSSVM the fraction
of training vectors that will be considered was chosen so that the number of
training vector was defined as 70%, 80%, 90% of the full training dataset. We
named them as IP-LSSVM10%, IP-LSSVM20% and IP-LSSVM30%, respectively.
Moreover, in each interaction of the P-LSSVM 1% of the trainning dataset was
pruned until the loss performance reach a maximum of 2.5%.

By analyzing the Table 2, one can conclude that the performances achieved
by OP-LSSVM were equivalent or even superior for most classifiers as well as can
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also see that our proposal achieves sparse solutions so that the OP-LSSVM has
sparser solutions than the other classifiers for all the datasets, except for PCV,
DER and BCW for SVM classifier. This interesting achievement shows that
we succeed in building sparse classifiers with less support vectors than LSSVM,
P-LSSVM and IP-LSSVM, and even than SVMs.

The training time, in general, is greater when compared to others method-
ologies. However, as the number of training samples increases, the training time
achieved by OP-LSSVM grows slower than LSSVM. Therefore, we support that
for a larger dataset the OP-LSSVM training time will be smaller than LSSVM.

6 Conclusion

Our proposal named OP-LSSVM is an approach to train LSSVMs. Thus, we
are able to obtain the Lagrange multipliers and the bias from the linear systems
for LSSVMs. Based on the obtained results, we can conclude that we reach
competitive classifiers in terms of accuracy while improving the model sparse-
ness. Indeed, the presented proposal is an interesting alternative to the other
classifiers, since the average of support vectors for OP-LSSVM was lower than
the average for LSSVM, P-LSSVM, IP-LSSVM and SVM.
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