
Learning Contextual Affordances
with an Associative Neural Architecture

Francisco Cruz, German I. Parisi, and Stefan Wermter

University of Hamburg - Department of Informatics
Vogt-Koelln-Strasse 30, 22527 Hamburg - Germany

http://www.informatik.uni-hamburg.de/WTM/

Abstract. Affordances are an effective method to anticipate the ef-
fect of actions performed by an agent interacting with objects. In this
work, we present a robotic cleaning task using contextual affordances, i.e.
an extension of affordances which takes into account the current state.
We implement an associative neural architecture for predicting the effect
of performed actions with different objects to avoid failed states. Experi-
mental results on a simulated robot environment show that our associative
memory is able to learn in short time and predict future states with high
accuracy.

1 Introduction

Robots are increasingly being used in diverse fields of application and it is ex-
pected that they will carry out dexterous tasks in real time. Therefore, the
anticipation and resolution of conflict situations that may lead to mistakes or
incomplete tasks is a desired property for robots aiming to successfully operate
in real-world environments. In this work, we extend a reinforcement learning
scenario that consists of a robot in front of a table with the aim to clean it [1].
During the execution of this task, the robot will transit different states by per-
forming actions and using objects until a desired final state is achieved. However,
there are actions that cannot be performed in certain states since they may lead
to a failed state, thereby preventing the robot to successfully finish its task. To
deal with this issue we use affordances [2], which are a learning model that allows
to predict the effect of performing an action utilizing an object. Nevertheless,
this scheme does not take into account the current state of the agent and hence,
the information needed as input to anticipate the effect is incomplete. In this
regard, we propose an extension to this model called contextual affordances that
considers the current state as an additional input variable in order to accurately
predict the effect of an action using an object.

We implement an architecture containing a layer with a quadratic complex
neuron [3] to learn and associate the contextual affordances. The associative
architecture shapes a virtual grid in a complex plane to map inputs into the
output space. This architecture allows us to train our model with few iterations
obtaining accurate results in a simulated environment with a humanoid robot
that must clean a table interacting with different objects.

665

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

(a) In this scenario, the affordance of
graspability is temporally unavailable.

(b) Our simulated scenario with two
objects: a cup and a sponge.

Fig. 1: A real (a) and a simulated (b) robotic scenario.

2 Contextual Affordances

Affordances are available action possibilities for an agent in its environment [2].
They represent characteristics of the relation between an agent and an object in
terms of opportunities the object offers to the agent[4]. In robotics, they have
been used as a triplet:

affordance :=< action, object , effect >, (1)

which encodes relationships between its components [5][6]. Therefore, it is pos-
sible to predict the effect using actions and objects as domain variables, i.e.
effect = f (action, object).

Nevertheless, although this model has been shown to be suitable for many
scenarios, it does not include context information which allows to properly an-
ticipate the effects in all situations [7]. We would like to point out that the fact
of being able to use or not an affordance in a given state does not determine the
existence of the affordance itself. Conversely, the affordance is still present but
cannot be applied at this state, or it can imply a different effect using a certain
action with a given object. Let us consider the scenario shown in Fig. 1a: a cup
affords grasping, as does a die, but in the case that an agent has both hands
occupied with two dice, then it will not be able to also grasp the cup, i.e. the
affordance is temporarily unavailable.

To overcome this issue, it is possible to use contextual affordances where
an additional variable is considered to introduce information about the current
state [7]. In this case, the previous triplet is now extended to:

contextualAffordance :=< state, action, object , effect >. (2)

Using this tuple, we then can predict the effect by considering the function
effect = f (state, action, object). For instance, given two affordances using the

666

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

same action a and the same object o, but at different states s1 6= s2, they
may generate different effects e1 6= e2. It is unfeasible to establish differences
between these affordances without state information, given that e1 = f(a, o)
and e2 = f(a, o) would suggest e1 = e2. Therefore, dealing with the current
states s1 6= s2, an agent will distinguish each case and learn at the same time
by using contextual affordances to predict the effects e1 6= e2 by e1 = f(s1, a, o)
and e2 = f(s2, a, o) establishing clear differences between them [1].

In some cases, the object can also be a location, e.g., a hill affords climbing
if the action is to climb and the object, or rather the location, is the hill. In
general, we use the term object to refer to both objects and locations.

3 Associative Neural Architecture

We develop an associative neural architecture with a complex-valued quadratic
neuron [8] to define a new two-dimensional grid on the output space as presented
in [3]. For an input vector X ∈ Cn, the scalar complex output is y = X∗AX,
where A ∈ Cn×n is the weight matrix and X∗ denotes the conjugate transpose.
The output can be written as the summation of the individual terms that involve
the components of X and A:

y =

n∑
j=1

n∑
k=1

x̄jxkajk. (3)

The gradient descent learning rule that minimizes the mean-square error is:

4A = αεX̄XT , (4)

where α is a small real-valued learning rate. For a given input vector X, the
desired output Y to be used in the learning algorithm is defined as the nearest
intersection point of the grid lines of the complex plane. In practice, a function
Ψ is defined that rounds to the nearest integer for grid lines spaced at a fixed
distance δ in both directions:

Ψ(Y) =
round(δRe(Y))

δ
+ i

round(δIm(Y))

δ
. (5)

This function creates a virtual grid where the output snaps onto the nearest
grid corner. The training algorithm is as follows: (i) initialize the weights of the
neuron with random values, (ii) compute Y , (iii) compute d = Ψ(Y), and (iv)
update the weights of the neuron according to Eq. 4.

At each iteration, the steps (ii) to (iv) are carried out for all the input vectors,
so that a cluster in the input space will map to a similar region in the output
space due to the continuity of the activation function. The stop criterion can
be a fixed number of iterations, a decreasing learning rate, or a given minimum
mean-square error over all inputs.

667

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Data Representation

Side conditions Locations Actions Objects

dd 1 0 0 0 home 1 0 0 get 1 0 0 0 sponge 1 0
dc 0 1 0 0 left 0 1 0 drop 0 1 0 0 cup 0 1
cd 0 0 1 0 right 0 0 1 goto 0 0 1 0 free 0 0
cc 0 0 0 1 none 0 0 0 clean 0 0 0 1

Table 1: Representation of training data used for neural classification.

4 Robotic Scenario

The task consists of a robot standing in front of a table to clean it. The robot can
use one arm and its gripper to manipulate a set of objects in order to complete
the cleaning task. For this task, we define objects, locations, and actions. The
scenario includes two objects: a sponge and a cup. The table is divided in three
zones, the left and right table sides and an additional position called home where
the robot can place the sponge during the execution of the task. We allow the
robot to perform four actions: get <object>, drop <object>, goto <location>,
and clean the table section where the robot arm is placed at that moment. The
robotic-cleaning task in a simulated environment is depicted in Fig. 1b.

Each robot state in the scenario takes into account four variables: (i) the
robot’s hand position, (ii) the object held in its hand (if any), (iii) the position
of the cup, and (iv) the condition of each side of the table, i.e. whether the
surface is clean or dirty. The vector state is represented as:

st =< handPosition, handObject, cupPosition, sideCondition > . (6)

Nevertheless, from a given state the robot could perform actions that lead to a
failed state, i.e. a state from where it is not possible to complete the task. For in-
stance, let us assume the current state st =< right , sponge, right , (dirty , dirty) >,
i.e. the cup is placed on the right side of the table and the robot’s hand is above
it holding the sponge. If the robot then cleans the right section of the table, it
may shatter the cup, therefore, it is not feasible to finish the cleaning task from
the next state st+1.

We encode all the variables as presented in Table 1, where we show the
data representation for side conditions, locations, actions, and objects. In side
conditions, letters d and c represent the fact of being dirty or clean respectively.

5 Experimental Results

Our approach uses contextual affordances to predict the effect of an action after
it has been performed by the robot. We use the representation shown in Table 1
to represent the training data. As input, we use vectors with 21 variables con-
taining information about the current state, the action, the object and/or the
location, whereas each state is contained in the first 12 components of the vector

668

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Fig. 2: Associative neural architecture for next state prediction. In our scenario,
the state reached by the robot represents the affordance effect.

(a) Mean squared error over 10 training
iterations.

(b) Final distribution of the output
projected into the complex domain.

Fig. 3: Training error (a) and final distribution (b) of the associative layer.

considering the four variables that define a state (see Fig. 2). Our architecture
comprises an associative neural layer that maps the current state of the system
into the expected effect, that corresponds to the effect from contextual affor-
dances encoded as 12 variables representing the next state. When a performed
action leads to a failed state, all components of the output vector are equal to
zero. The data were created considering all possible states together with actions
and objects (or locations). The total number of data samples was 368 instances
for the training of the associative layer.

During the training, we associate the desired output state label l(Ψ(Y))
for classification purposes. After the training phase, when a new sample is
presented to the neuron, we compute y′ and return the state label that minimizes
‖Ψ(y′)−Ψ(Y)‖. For our implementation, we set δ = 0.001 and used the decaying
learning rate:

αt = α0 ∗ e
−t(t+3)

k , (7)

669

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

where t is the iteration number, α0 = 0.01 and k = 5000.
Experiments show that our architecture with an associative layer is able

to classify all the instances correctly after training. The mean square error
decreased from 2.92e-3 to 2.37e-5 after 10 iterations as shown in Fig. 3a. The
final distribution of the output after 10 iterations is shown in Fig. 3b, where the
x and y axes are the real and imaginary parts respectively of the complex plane.

6 Conclusions and Future Work

Our proposed architecture is able to successfully predict the effect of performing
an action using an object by using contextual affordances. We use additional
state information to distinguish different situations in a robotic cleaning scenario
and avoid failed states to effectively finish the task. The associative complex
architecture allows to map the input vectors into valid states with few training
iterations, which represents an advantage for online learning applications where
the response time plays a crucial role.

As future work, we will extend the simulated scenario to a real robot platform
obtaining the input vector using a vision sensor and the output vector from the
real state of the robot after performing the action in the cleaning scenario.

Acknowledgment

The authors gratefully acknowledge partial support by the Universidad Central de
Chile, CONICYT scholarship 5043, the DAAD German Academic Exchange Service
(Kz:A/13/94748) under CASY project, the German Research Foundation DFG under
project CML (TRR 169), and the Hamburg Landesforschungsförderungsproject.

References

[1] F. Cruz, J. Twiefel, S. Magg, C. Weber, and S. Wermter, Interactive reinforcement learn-
ing through speech guidance in a domestic scenario, in The International Joint Conference
on Neural Networks (IJCNN), pp. 1341–1348, 2015.

[2] J. J. Gibson, The Ecological Approach to the Visual Perception of Pictures, Boston:
Houghton Mifflin, 1979.

[3] G. Georgiou and K. Voigt, Self-organizing maps with a single neuron, in The International
Joint Conference on Neural Networks (IJCNN), pp. 1–6, 2013.

[4] T.E. Horton, A. Chakraborty, and R. St. Amant, Affordances for robots: a brief survey,
in AVANT: Journal of Philosophical-Interdisciplinary Vanguard, Vol (2), pp. 70–84. 2012

[5] E. Şahin, M. Çakmak, M. R. Doğar, E. Uğur, and G. Üçoluk, To afford or not to afford:
A new formalization of affordances toward Affordance-Based robot control, in Adaptive
Behavior, Vol. 15, no. 4, pp. 447–472, 2007.

[6] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, Learning Object Af-
fordances: From Sensory-Motor Coordination to Imitation, in IEEE Transactions on
Robotics, Vol. 24, No. 1, pp. 15–26, 2008.

[7] M. Kammer, T. Schack, M. Tscherepanow, and N. Yukie, From Affordances to Situ-
ated Affordances in Robotics - Why Context is Important, in Frontiers in Computational
Neuroscience, Conference Abstract IEEE ICDL-EpiRob, Vol. 5(30), 2011.

[8] G. Georgiou, Exact interpolation and learning in quadratic neural networks, in The In-
ternational Joint Conference on Neural Networks (IJCNN), pp. 230–234, 2006.

670

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

