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Abstract. Contrastive Divergence (CD) and Persistent Contrastive Divergence
(PCD) are popular methods for training Restricted Boltzmann Machines. However,
both methods use an approximate method for sampling from the model distribution.
As a side effect, these approximations yield significantly different biases and vari-
ances for stochastic gradient estimates of individual data points. It is well known
that CD yields a biased gradient estimate. In this paper we however show em-
pirically that CD has a lower stochastic gradient estimate variance than unbiased
sampling, while the mean of subsequent PCD estimates has a higher variance than
independent sampling. The results give one explanation to the finding that CD can
be used with smaller minibatches or higher learning rates than PCD.

1 Introduction

Popular methods to train Restricted Boltzmann Machines [1] include Contrastive Diver-
gence [2, 3] and Persistent Contrastive Divergence1 [4, 5]. Although some theoretical
research has focused on the properties of these two methods [6, 7, 5], both methods are
still used in similar situations, where the choice is often based on intuition or heuristics.

One known feature of Contrastive Divergence (CD) learning is that it yields a biased
estimate of the gradient [6, 7]. On the other hand, it is known to be fast for reaching
good results [7, 5]. In addition to the computationally light sampling procedure in CD,
it is claimed to benefit from a low variance of the gradient estimates [2, 7]. However,
the current authors are not aware of any rigorous research on whether this claim holds
true, and what the magnitude of the effect is2.

On the other hand, Persistent Contrastive Divergence (PCD) has empirically been
shown to require a lower learning rate and longer training than CD3 [5]. In that work,
the authors propose that the low learning rate is required since the model weights are
updated while the Markov chain runs, which means that in order to sample from a dis-
tribution close to the stationary distribution the weight cannot change too rapidly. How-
ever, for similar reasons that CD updates are assumed to have low variance, subsequent
PCD updates are likely to be correlated leading to a possibly undesirable ”momentum”
in the updates. This behavior would effectively increase the variance of the mean of
subsequent updates, requiring either larger minibatches or smaller learning rates.

In this paper we explore the variances of CD, PCD and unbiased and independent
stochastic gradient estimates. We hope to shed light on the observed fast speed of CD
learning, and on the required low learning rate for PCD compared to CD.

1Persistent Contrastive Divergence is also known as Stochastic Maximum Likelihood
2The topic has been covered in e.g. [8], although for a Boltzmann machine with only one visible and

hidden neuron.
3There are however tricks to be able to increase the learning rate of PCD, see e.g. [9]
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2 Contrastive Divergence and Persistent Contrastive Divergence

A restricted Boltzmann machine (RBM) is a Boltzmann machine where each visible
neuron xi is connected to all hidden neurons hj and each hidden neuron to all visible
neurons, but there are no edges between hidden and hidden or between visible and
visible neurons. An RBM defines an energy of each state (x,h) by

− E(x,h | θ) = b�x+ c�h+ x�Wh

and assigns the following probability to the state via the Boltzmann distribution:

p(x,h | θ) = 1

Z(θ)
exp {−E (x,h | θ)}

where θ = {b, c,W} is a set of parameters and Z(θ) normalizes the probabilities to
sum up to one. The log likelihood of one training data point is hence

φ = logP (x) = log

(

∑

h

exp {−E (x,h | θ)}
)

− logZ(θ) = φ+ − φ−

Sampling the positive phase, i.e. the data-drive phase of the gradient of the log likeli-
hood ∂φ+

∂W is easy, but sampling the negative phase, i.e. the model-driven phase ∂φ−

∂W is
intractable.

A popular method to solve sampling of the negative phase is Contrastive Diver-
gence (CD). In CD, the negative particle is sampled only approximately by running a
Markov Chain only k steps (often only one step) from the positive particle [2]. Another
method, called Persistent Contrastive Divergence (PCD) solves the sampling with a re-
lated method, only that the negative particle is not sampled from the positive particle,
but rather from the negative particle from the last data point [5].

3 Experiments

In order to examine the variance of CD and PCD gradient estimates, we use an empir-
ical approach. We train an RBM and evaluate the variance of gradient estimates from
different sampling strategies at different stages of the training process. The sampling
strategies are CD-k with k ranging from 1 to 10, PCD, and CD-1000 that is assumed
to correspond to an almost independent and unbiased stochastic gradient. In addition,
we test CD-k with independent samples (I-CD), where the negative particle is sampled
from a random training example. The variance of I-CD separates the effect of the nega-
tive particle being close to the data distribution in general, and the effect of the negative
particle being close to the positive particle in question.

We use three different data sets. The first is a reduced size MNIST [10] set with
14 × 14 pixel images of the first 1 000 training set data points of each digit, totaling
10 000 data points. The second data set are the center 14× 14 pixels of the first 10 000
CIFAR [11] images converted into gray scale. The third are the Caltech 101 Silhouettes
[12], with 8 641 16×16 pixel black and white images. We binarize the grayscale images
by sampling the visible units with activation probabilities equal to the pixel intensity.
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Fig. 1: The CD-k vs. CD-1000 (assumed to be unbiased and independent) ratio of the
variance of the gradient estimate for different values of k after 10 and 500 epochs of
training. Error bars indicate standard deviation between iterations.

We set the number of hidden neurons equal to the number of visible neurons. The
biases are initialized to zero, while the weights are initially sampled from a zero-mean
normal distribution with standard deviation 1/

√
nv + nh where nv and nh are the num-

ber of visible and hidden neurons, respectively. We train the model with CD-1, and eval-
uate the variance of the gradient estimates after 10, and 500 epochs. We use Adaptive
learning rate [13] with an initial learning rate of 0.01. We do not use weight decay.

In all of the gradient estimates, the final sampling step for the probabilities of the
hidden unit activations is omitted. The gradient estimate is therefore based on sampled
binary visible unit activations, but continuous hidden unit activation probabilities con-
ditional on these visible unit activations. This process is called Rao-Blackwellisation
[9], and is often used in practice. The variance is calculated on individual gradient es-
timates based on only one positive and negative particle each. In practice, the gradient
is usually estimated by averaging over a mini-batch of N independent samples, which
diminishes the variance N-fold. We ignore the bias gradient estimates.

When analyzing subsequent PCD gradient estimates, the negative particles of the
first estimate are sampled 1 000 steps from a random training example. Subsequent
m estimates are then averaged, where the positive particle is randomly sampled from
the data for each step while the negative particle is sampled from the previous negative
particle. No learning occurs between the subsequent estimates. We can therefore disen-
tangle the effects of weight updates from the effect of correlation between subsequent
estimates.

We iterate all results for 10 different random initializations of the weights, and eval-
uate the variance by sampling gradient estimates of individual training examples 10
times for each training example in the data set. The variance is calculated for each
weight matrix element separately, and the variances of the individual weights are then
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Fig. 2: The I-CD-k vs. CD-1000 (assumed to be unbiased and independent) ratio of the
variance of the gradient estimate for different values of k as a ratio compared to after 10
and 500 epochs of training. Error bars indicate standard deviation between iterations.

averaged.

4 Results

As we can see from Figure 1, the variance of Contrastive Divergence is indeed smaller
than for unbiased sampling of the negative particle. We also see that the variance of
CD estimates quickly increases with the number of CD steps. However, this effect is
significant only in later stages of training. This phenomenon is expected, as the model
is expected not to mix as well in later stages of training compared to when the weights
are close to the small initial random weights.

If we sample the negative particle from a different training example than the positive
particle (I-CD), in Figure 2 we see that the variance is similar or even larger compared
to the variance with unbiased sampling. Although it is trivial that the variance of the
I-CD estimates is higher than for CD, the interesting result is that I-CD loses all of
the variance advantage against unbiased sampling. The result supports the hypothesis
that the low variance of CD precisely stems from the fact that the negative particle is
sampled from the positive particle, and not from that the negative particle is sampled
only a limited number of steps from a random training example.

For subsequent PCD updates, we see in Figure 3 that the variance indeed is consid-
erably higher than for independent sampling. E.g. assuming a small enough learning
rate, the variance of the mean of six subsequent gradient estimates is roughly three
times as high as if the negative particles were sampled independently for the Silhou-
ettes dataset after 500 epochs of training. Again, as expected this effect is stronger the
later during training the evaluation is done.

When looking at the magnitude of the variance difference, we see that for CD-1,
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Fig. 3: The PCD vs CD-1000 (assumed to be unbiased and independent) ratio of the
variance for the mean of m subsequent estimates after 10 and 500 epochs of training.
Error bars indicate standard deviation between iterations.

the mean of 10 subsequent updates have a multiple times smaller variance than PCD. In
effect, this means that ignoring any other effects and the effect of weight updates, PCD
would need considerably smaller learning rates or larger minibatches to reach the same
variance per minibatch. This magnitude is substantial, and might explain the empirical
finding that PCD performs best with smaller learning rates than CD.

5 Conclusions

Contrastive Divergence or Persistent Contrastive Divergence are often used for training
the weights of Restricted Boltzmann machines. Contrastive Divergence is claimed to
benefit from low variance of the gradient estimates when using stochastic gradients.
Persistent Contrastive Divergence could on the other hand suffer from high correla-
tion between subsequent gradient estimates due to poor mixing of the Markov chain
estimating the model distribution.

In this paper, we have empirically confirmed both of these findings. In experiments
on three data sets, we find that the variance of CD-1 gradient estimates are considerably
lower than when independently sampling with many steps from the model distribution.
Conversely, the variance of the mean of subsequent gradient estimates using PCD is
significantly higher than with independent sampling. This effect is mainly observable
towards the end of training. In effect, this indicates that from a variance perspective,
PCD would require considerably lower learning rates or larger minibatches than CD.
As CD is known to be a biased estimator, it therefore seems that the choice between CD
and PCD is a trade-off between bias and variance.

Although the results in this paper are practically significant, the approach in this
paper is purely empirical. Further theoretical analysis of the variance of PCD and CD
gradient estimates would therefore be warranted to confirm these findings.
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