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Abstract. The assessment of mortality in patients with cardiovascular
disease (CVD) risk factors is typically a challenging task given the large
amount of collected variables and the imbalance between classes. This is
the case of the ESCARVAL-RISK dataset, a large cardiovascular follow-
up record spanning 4 years. This study intends to give insight into: a)
the performance of variable selection methods, b) the best class balancing
method and c) choosing an adequate classifier to predict mortality. We
conclude that combining ADASYN with SVM classifiers without and with
AUC score-based feature selection, and RUSBoost combined with boosting
tree ensembles are the most suitable methodologies among the tested.

1 Introduction

The identification of patients with increased risk of mortality based on health
indicators constitutes a typical scenario of imbalanced class distributions, i.e.
when there exists a majority (negative) class that dominates over a minority
(or positive) class with abnormal or outstanding information. Fraud detection,
anomaly detection and network intrusion are other typical examples.

This paper deals with the classification of patients with cardiovascular disease
(CVD) risk factors and their mortality when the collected data are imbalanced.
CVDs are the first cause of mortality and disease burden worldwide. Identifying
susceptible individuals allows to implement high-risk preventive strategies.

In the literature it is possible to find several approaches to heart disease risk
assessment as a function of risk factors evaluated from clinical records and their
relevance, using machine learning methods [1, 2], multiple regression models [3, 4]
and G-estimations [5], and other that deal with how to cope with imbalanced
datasets for medical diagnosis [6]. There are also studies on the estimation of
the outcome of cardiac rehabilitation in patients by balancing data and applying
machine learning techniques [7].
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thanks must be given to Escarval Study Group: D. Orozco-Beltrán, V. Gil-Guillén, J. Navarro-
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The goal of this paper is, in the first place, to process the data and extract
information and dependencies between variables to determine the most relevant
ones according to well-known selection criteria. The next step is to evaluate
several class balancing methods. Finally, several classifiers will be tested and
the best overall performer will be selected.

The paper is divided as follows: Section 2 describes the origin of the data,
Section 3 presents the proposed methodology to perform all the steps of the
classification process, Section 4 discusses which are the most relevant results
and determines the optimal methodology for the prediction and finally Section
5 draws some concluding remarks.

2 The ESCARVAL-RISK dataset

The data used in this study correspond to a very complete sample of patients
receiving healthcare at the Valencian Health Agency [8], with at least one of the
following CVD risk factors: hypertension, diabetes mellitus and/or dyslipidemia.
After preprocessing and removal of samples with critical missing data, the final
dataset contains N = 54,678 samples, d = 109 input variables and a binary
output variable (mortality), which is positive for less than 2% of the participants.

3 Methodology

The three-step strategy to be followed is represented in Fig. 1. Feature selection
gives insight into the actual relevant risk factors and greatly alleviates the com-
putational cost of the learning algorithms. Class balancing methods typically
oversample the minority class or undersample the majority class. It has proven
useful to improve predictions depending on the chosen classifier but it sometimes
leads to over generalization [9] when synthetic samples are created, and specially
when the minority class samples are too scarce to adequately represent its dis-
tribution. Support Vector Machine (SVM) classifiers and Random Forests (RF)
tend to profit from class balancing while Logistic Regression models are not the
best choice [10]. After this step, several state-of-the-art classifiers will be evalu-
ated, according to their general performance with both classes, but emphasizing
their performance with the positive class as in medical diagnosis it is necessary
to be conservative and minimize the false negatives.

3.1 Feature selection

Subsets of features have been extracted according to the following criteria:
1. Baseline variables based on clinical heuristics (BAS). These variables have
proven useful in previous studies to establish a prospective association of renal
function with mortality1 [8].

1Clinically meaningful variables to predict mortality and cardiovascular risk from renal
function and, in particular, from estimated glomerular filtration rate (eGFR).
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Fig. 1: Flow chart of the proposed multi-step strategy. After an initial hold-out
partition of the data (50% of the samples for training/test), the first step is
the feature selection on the training data. Next, class balancing methods are
applied. Finally, the classification rate is evaluated on the test data.

2. Mutual Information (MI): Ranking the input variables according to their MI
with the output and using heuristics to choose a suitable threshold.
3. Statistical Dependency (SD): Ranking the variables according to the maxi-
mization of the SD criterion, connected with the maximum joint probability of
the input variables and the output, and selecting a suitable threshold.
4. ReliefF (REL): Feature ranking according to a nearest neighbors formulation
which modifies the weights of a feature depending on the differences between its
closest instances belonging to the same or to different class.
5. AUC score (AUC): Maximization of the AUC variation of the ROC associated
with the positive class as an indicative of the joint influence in the sensitivity
and specificity of the classifier.

3.2 Class balancing

Both oversampling and undersampling methods have been assessed for class
balancing purposes:
1. Synthetic Minority Over-sampling Technique (SMOTE): The minority class
is oversampled by creating random ”synthetic” examples [11].
2. Adaptive synthetic sampling approach for imbalanced learning (ADASYN):
The idea is to generate more synthetic data for the minority class examples that
are harder to learn compared to those that are easier to learn [12].
3. Random Undersampling Boosting (RUSBoost): RUSBoost combines random
undersampling (which arbitrarily removes samples from the majority class) with
the principles of the SMOTEBoost algorithm, i.e. it applies an intelligent over-
sampling technique, as compared to the randomness of SMOTE, which helps to
balance the class distribution [13].
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Classifier TPR (%) TNR (%) PPV (%) NPV (%) Error (%) AUC
SVM 48.41 100 100 99.10 0.89 0.85
DT 33.97 99.13 40.61 98.85 1.99 0.67

BTE 23.14 100 100 98.67 1.32 0.95

Table 1: Classification results on the test set with all variables.

3.3 Classifiers

The performance obtained from several types of classifiers has been compared:
1. Support Vector Machine (SVM): The SVM binary classifier tries to solve the
primal problem by finding the optimal separation hyperplane between the two
classes in a higher dimensional dual space.
2. Decision Tree (DT): Binary classification model that predicts the value of a
target variable by learning simple decision rules inferred from the data features.
3. Boosting tree ensemble (BTE): A fitted ensemble of trees combining trained
weak learner models and data on which these learners were trained. The ensem-
ble prediction is made by aggregating predictions from its weak learners. Boost-
ing involves incrementally building the ensemble by training each new model
instance to emphasize the training instances that previous models misclassified.

Linear logistic regression models have not been included in the analysis as
they do not benefit from the class balancing methods.

4 Results

The data were randomly divided at 50%/50% ratio into training and test sets.
Ten different seeds were used for robustness and reproducibility and the results
were averaged. The objective is to determine the combination of methods that
maximizes the area under the ROC curve (AUC score), maximizes the negative
predictive value (NPV) rate and finally maximizes the true positive rate (TPR).
Initially, the different classifiers have been evaluated on the data with all the
variables. The test results are listed in Table 1. The best performing method is
BTE in terms of AUC. In preliminary tests, RF were essayed as a bagging alter-
native to BTE. The results of both methods were similar when using all variables
but the performance of RF with fewer features produced a much higher FN rate.
SVM seems a potential candidate too because of the higher TPR in comparison
with BTE. Therefore, BTE and SVM are the potential best classifiers.

The next step was to assess the diverse feature selection methods in combina-
tion with class balancing techniques and evaluate the classification performance
with SVM and BTE. The candidate strategies were: SMOTE + SVM, ADASYN
+ SVM and RUSBoost + BTE, as RUSBoost’s weak learner architecture favours
the simpler tree ensembles rather than SVMs. Table 2 summarizes the results of
these strategies with the different feature selection criteria. The best performing
combinations of methods are ADASYN + SVM and RUSBoost + BTE with all
the variables when basing the decision firstly on the maximum AUC score (0.98),
secondly on the minimum amount of FNs (maximum NPV) and thirdly on the

298

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



Method FS No vars TPR (%) TNR (%) PPV (%) NPV (%) AUC
- 109 67.94 99.97 97.56 99.44 0.86

AUC 23 59.02 99.56 70.20 99.28 0.94
SMOTE REL 31 0 100 - 98.28 0.6
+ SVM BAS 16 0 100 - 98.28 0.55

MI 20 46.28 98.91 42.66 99.06 0.77
SD 25 46.92 99.03 45.85 99.07 0.79
- 109 73.89 99.94 95.87 99.54 0.98

AUC 23 75.58 98.65 49.51 99.57 0.95
ADASYN REL 31 61.57 87.11 7.73 99.23 0.84
+ SVM BAS 16 63.91 85.91 7.37 99.27 0.84

MI 20 65.39 97.00 27.67 99.38 0.85
SD 25 65.61 97.26 29.54 99.38 0.84
- 109 74.31 100 100 99.55 0.98

AUC 23 62.85 99.61 73.82 99.35 0.94
RUSBoost REL 31 55.20 95.93 19.20 99.19 0.87

+ BTE BAS 16 60.08 84.33 6.30 99.18 0.81
MI 20 60.72 95.62 19.56 99.29 0.84
SD 25 61.15 95.84 20.47 99.29 0.84

Table 2: Classification results on the test set with class balancing and feature
selection (FS). The best results are highlighted in bold.
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Fig. 2: ROC curves of the best performing methods on the test set: a) ADASYN
+ SVM with all variables, b) ADASYN + SVM with 23 selected variables using
the maximum AUC influence criterion, c) RUSBoost + BTE with all variables.

amount of hits (maximum TPR). ADASYN + SVM with AUC score feature
selection represents an interesting trade-off. Although conservative and not the
best in terms of AUC (0.95), it achieves the highest NPV and TPR. Additionally,
it benefits from a reduced computational cost. In Fig. 2 we represent the ROC
curves of these three best strategies. It is worth to point out that the baseline
feature selection based on renal function performs the worst.

5 Conclusions

A large record of patients with CVD risk factors and their associated mortality
risk has been analyzed by means of a multi-step strategy that combines feature
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selection, class balancing and classification. From the results of the analysis,
we conclude that the best strategies based purely on the AUC and error rate
correspond to skipping feature selection and directly apply class balancing and
classification with ADASYN + SVM and RUSBoost + BTE (AUC = 0.98).
However, the best trade-off considering a good AUC (0.95), optimal TPR and
NPV and reduced computational cost is ADASYN + SVM with feature selection
using the AUC score influence to rank the inputs.
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