
Bayesian Semi Non-negative Matrix
Factorisation

Albert Vilamala, Alfredo Vellido and Llúıs A. Belanche
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Abstract. Non-negative Matrix Factorisation (NMF) has become a
standard method for source identification when data, sources and mixing
coefficients are constrained to be positive-valued. The method has recently
been extended to allow for negative-valued data and sources in the form of
Semi- and Convex-NMF. In this paper, we re-elaborate Semi-NMF within
a full Bayesian framework. This provides solid foundations for parameter
estimation and, importantly, a principled method to address the problem
of choosing the most adequate number of sources to describe the observed
data. The proposed Bayesian Semi-NMF is preliminarily evaluated here
in a real neuro-oncology problem.

1 Introduction

Non-negative Matrix Factorisation (NMF) has quickly established itself [1] as
a reliable source identification method when data, sources and mixing coeffi-
cients are constrained to be positive-valued. The method has recently been ex-
tended [2] to allow for negative-valued data and sources in the form of Semi- and
Convex-NMF. In previous work, we have developed variants of these including
Discriminant Convex-NMF [3] and Probabilistic Convex-NMF [4].

Given a matrix of real-valued observations X ∈ RD×N± , where N is the num-
ber of instances and D the dimensionality, Semi-NMF decomposes this matrix as
a linear combination of K D-dimensional sources of mixed sign S ∈ RD×K± and

a matrix H ∈ RK×N+ of non-negative mixing coefficients. This decomposition

takes the form: X = SH + E, where E ∈ RD×N± is the error matrix.
NMF was described within the Bayesian probability paradigm in [5]. Here, we

re-elaborate Semi-NMF [2] within a full Bayesian framework. This provides solid
foundations for parameter estimation and, importantly, a principled method
to address the problem of choosing the most adequate number of sources to
describe the observed data, which is of utmost importance in real applications.
The proposed Bayesian Semi-NMF is preliminarily evaluated in a real neuro-
oncology problem for which NMF methods have shown to yield relevant results
over recent years [6].

2 Full Bayesian Semi Non-negative Matrix Factorisation

In this section, we provide a full Bayesian probabilistic formulation for Semi-
NMF: elements of the source matrix S are encoded as samples from a Gaussian
distribution, while the values of the mixing matrix H are conveniently obtained
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from an Exponential density. Residuals in E are assumed to be i.i.d.; specifically,
normally distributed with zero mean. According to the Bayes rule, the joint
posterior for the model is defined as:

p
(
S,H, σ2 | X

)
=
p
(
X | S,H, σ2

)
· p (S | θS) · p (H | θH) · p

(
σ2 | θσ

)
p (X)

. (1)

Given that the marginal likelihood p (X) is constant with respect to the model
parameters, p

(
S,H, σ2 | X

)
∝ p

(
X | S,H, σ2

)
·p (S | θS)·p (H | θH)·p

(
σ2 | θσ

)
,

where:

p
(
X | S,H, σ2

)
=

D∏
d=1

N∏
n=1

N
(
Xd,n; (SH)d,n, σ

2
)
,

p (S | θS) =
D∏
d=1

K∏
k=1

N
(
Sd,k;µo, σ

2
o

)
,

p (H | θH) =
K∏
k=1

N∏
n=1

E (Hk,n;λo) ;

N
(
x;µ, σ2

)
= (2πσ2)−1/2 exp{− (x− µ)

2
/(2σ2)} and E (x;λ) = λ exp {−λx}

being the Normal and Exponential densities, respectively. In addition, θS =
{µo, σ2

o} and θH = {λo} are the hyperparameters for the source and mixing
priors. Finally, the prior for the noise variance is appropriately chosen to be an
Inverse Gamma of the form:

p
(
σ2 | θσ

)
= IG

(
σ2;αo, βo

)
=

βαo
o

Γ(αo)
(σ2)−αo−1 exp

(
−βo
σ2

)
,

with θσ = {αo, βo} as hyperparameters. From this joint posterior, we aim
at estimating the marginal density of each S and H factor, but this involves
the computation of an intractable integral. This intractability is overcome by
deriving the following Markov Chain Monte Carlo (MCMC) sampling method.

2.1 Gibbs sampling approach

A Gibbs sampling method for our model is here derived as a particular instance of
MCMC. It is of special interest when the calculation of either the joint posterior
distribution, the marginal distribution of any subset of factors, or the expected
value of any of the factors becomes intractable. Assuming that sampling from
the full conditional posterior distribution is feasible, drawing a set of instances
from this density converges to a sample from the joint posterior. If samples from
the marginal distribution of a subset of factors are required, only the samples for
that subset are kept; finally, the expected value of any factor can be computed
by averaging over all its samples. For our problem, we are interested in the
second output and, hence, we formulate the conditional density of S, which is
proportional to a Normal distribution multiplied by a Normal prior; that is:
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N
(
x;µp, σ

2
p

)
∝ N

(
x;µ, σ2

)
N
(
x;µo, σ

2
o

)
. Let A\(i,j) represent all elements of

A except Ai,j ; the full conditional density of Sd,k is

p(Sd,k | X,S\(d,k),H, σ2) = N
(
Sd,k;µp, σ

2
p

)
, (2)

where

µp = σ2
p

µo

σ2
o

+

∑N
n=1

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
Hk,n

σ2

 , σ2
p =

σ2 · σ2
o

σ2 + σ2
o

∑N
n=1 H

2
k,n

.

Turning to the mixing matrix, the full conditional density of H is proportional
to a Normal multiplied by an Exponential, which turns out to be a rectified
Normal density of the form R

(
x;µp, σ

2
p, λp

)
∝ N

(
x;µ, σ2

)
E (x;λo); that is:

p(Hk,n | X,S,H\(k,n), σ2) = R
(
Hk,n;µp, σ

2
p, λp

)
, (3)

where

µp =

∑D
d=1

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
Sd,k∑D

d=1 S2
d,k

, σ2
p =

σ2∑D
d=1 S2

d,k

, λp = λo.

Finally, the full conditional density of σ2 is proportional to the product of a Nor-
mal and an Inverse-Gamma: IG (x;αp, βp) ∝ N

(
x;µ, σ2

)
IG (x;αo, βo). Specif-

ically:
p
(
σ2 | X,S,H

)
= IG

(
σ2;αp, βp

)
, (4)

where

αp =
DN

2
+ αo, βp =

∑D
d=1

∑N
n=1 [Xd,n − (SH)d,n]

2

2
+ βo.

The resulting Gibbs sampler procedure for the Bayesian Semi-NMF formula-
tion is depicted in Algorithm 1. Details of derivations leading to the calculations
of the full conditional densities and their parameterisation can be found in [7].

Algorithm 1 Bayesian Semi-NMF Gibbs sampler

1) Normalise data X (L2-norm)
2) Randomly initialise S, H and σ2

3) For each sample m ∈ {1, . . . ,M}
a) For each d ∈ {1, . . . , D} and k ∈ {1, . . . ,K}:

i) Sample Sd,k according to Eq. 2
b) For each k ∈ {1, . . . ,K} and n ∈ {1, . . . , N}:

i) Sample Hk,n according to Eq. 3
c) Sample σ2 according to Eq. 4

d) Store S(m) = S;H(m) = H;σ2(m)
= σ2

4) Return {S(m),H(m), σ2(m)}Mm=1
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2.2 Marginal likelihood for model selection

Importantly, a Bayesian formulation allows model selection as informed choice
of the most adequate number of sources, through the estimation of p(X). In this
section, Chib’s method [8] is used to estimate p(X) by using only posterior draws
provided by the Gibbs sampler. By isolating p(X) in Eq. 1, the computation of
the resulting equation for any value (i.e., Φ) will result in a specific evaluation
of the marginal likelihood at the Φ point (selected to be a high density point for
the most accurate estimation). Comparison among models (each using different
numbers of sources) will entail comparing their p(X) estimates at Φ: p (X | Φ).
Obtaining the density at Φ for any of the factors in the numerator is easy;
difficulties arise when calculating p

(
S,H, σ2 | X

)
. Chib’s method provides a

solution by segmenting the parameters into B blocks and applying the chain
rule to write p

(
S,H, σ2 | X

)
as the product of B terms. That is:

p (Φ | X) = p (Φ1 | X)× p (Φ2 | Φ1,X)× . . .× p (ΦB | Φ1, . . . ,ΦB−1,X) . (5)

The blocks of parameters are chosen to be amenable to Gibbs sampling, such
that each term is approximated by averaging over the conditional density:

p (Φb | Φ1, . . . ,Φb−1,X) ≈ 1

M

M∑
m=1

p
(
Φb | Φ1, . . . ,Φb−1,Φ

(m)
b+1, . . . ,Φ

(m)
B ,X

)
,

where M is the number of samples and
{

Φ
(m)
b+1, . . . ,Φ

(m)
B

}
are Gibbs samples

from p (Φb+1, . . . ,ΦB | Φ1, . . . ,Φb−1,X). In our setting, each column of S, each
row of H and σ2 are selected to be the blocks in Eq. 5. Therefore, letting A∗

represent a matrix of high density points; A:,i correspond to all the values in the
i-th column and Aj,: to all the values in the j-th row, and in logarithmic scale:

log
{
p
(
S∗,H∗, σ2∗ | X

)}
= log

{
p
(
S∗:,1 | X

)}
+ log

{
p
(
S∗:,2 | S∗:,1,X

)}
+ . . .

+ log
{
p
(
σ2 | S∗:,1, . . . ,S∗:,K ,H∗1,:, . . . ,H∗K,:,X

)}
.

In order to compute the Bayes Factor between two models, namely Mi and
Mj , each built using different number of sources K, we proceed to evaluate the
marginal likelihood at

{
S∗,H∗, σ2∗} for both models and compare them using

B̂ij = exp{log p̂ (X | Mi) − log p̂ (X | Mj)}. This Bayes Factor allows us to
select the most adequate model out of a pool of models.

Matlab code of the proposed algorithms can be downloaded from http://

www.cs.upc.edu/~avilamala/resources/BayesianSNMF_Toolbox.zip

3 Empirical evaluation

A preliminary evaluation of the method was performed using a real neuro-
oncology problem. It entails tissue identification of different brain tumours from
single-voxel proton magnetic resonance spectroscopy (SV-1H-MRS) data with
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coherent mixed-sign signal amplitudes. Chib’s method was used to estimate the
most appropriate number of MRS sources and each of them was individually
assessed. A confidence measure of the model estimations (90% interval around
the signal) is also supplied (calculated as the 5th to 95th percentiles interval of
the Gibbs samples). Data belong to the online-accessible and curated INTER-
PRET repository [9]. The 195 most clinically relevant spectral frequencies were
selected for several types of tumour (78 glioblatomas -gbm-, 31 metastases -met-
and 20 astrocytomas grade II -ac2-) as well as healthy tissue (15 cases -nom-).

Given that all data points were normalised (L2-norm) prior to any treatment,
the parameters for the priors were chosen to match data amplitude. These
include µo = 0.01 and σ2

o = 0.2 to limit the values of the sources Sd,k between
−1 and 1 with p > 0.95; setting the λo = 3 to bound the values of the mixing
matrix Hk,n to the [0, 1] interval (p > 0.95); and αo = 1;βo = 0.001 as flat priors
for the noise variance σ2. The number of samples M generated at each Gibbs
sampler run was set to 100,000; the first 50,000 were discarded to allow burn-in.

1 2 3 4 5
nom 4.55 3.82 2.94 2.70 1.95
gbm 24.31 26.56 25.89 26.32 26.40
met 9.71 8.68 8.67 8.62 8.58
ac2 6.49 6.60 6.15 5.73 5.44

Table 1: Log of the marginal likelihood (×103) for different number of sources (1
to 5) for each tumour type and normal tissue. Best values highlighted in bold.

The results reported in Table 1 indicate that the values of the marginal likelihood
for different number of sources obtained by the Chib’s method clearly favour low
complexity models with one or two sources. Note that this estimate of the best
number of sources to represent the observed data from a source extraction view-
point might not necessarily be the most adequate for interpretability purposes in
the current application context. For instance, the homogeneity of healthy tissue
makes the 1-source choice sensible. This is not the case for metastases, though,
in which the 1-source choice might just reflect the characteristic necrotic tissue
of this tumour type obscuring the relevance of lesser-intensity sources. Note
also that this estimation does not preclude alternative choices, given that the
marginal likelihood provides a real-valued measure, not a binary one; in other
words, a relative -not an absolute- measure of relevance.

Results are especially interesting for gbm. Chib’s method suggests two sources,
which, in Fig.1 (b-c), clearly reflect necrotic (top row, right) and active (top row,
centre) tumour tissue. When three sources (d-f ) are arbitrarily extracted, the
third one (bottom row, right) clearly accounts for little more than noise.

4 Conclusions

The derived full Bayesian Semi-NMF is proposed as the method of choice for
NMF-based source extraction from mixed-sign data, particularly for problems
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Fig. 1: Sources identified by Bayesian Semi-NMF for gbm: Top row shows the average
gbm spectrum, together with the two sources captured according to the model selec-
tion. Bottom row arbitrarily decomposes the signal into 3 sources. The black solid
line represents the mean, while the shadowed region conforms the 90% credible inter-
val (5th to 95th percentiles of Gibbs samples). Y-axes represent unit-free metabolite
concentrations and X-axes represent frequency as measured in parts per million (ppm).

in which the choice of the most adequate number of sources is relevant from the
point of view of knowledge discovery.
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