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Abstract. WiSARD is a weightless neural model which essentially uses
look up tables to store the function computed by each neuron rather than
storing it in weights of neuron connections. Although WiSARD was orig-
inally conceived as a pattern recognition device mainly focusing on image
processing, in this work we show how it is possible to build a multi–class
classifier method in Machine Learning (ML) domain based on WiSARD
that shows equivalent performances to ML state–of-the–art methods.

1 Introduction

Mimicking biological neurons by focusing on the excitatory/inhibitory decoding
performed by the dendritic trees is a different and attractive alternative to the
integrate–and–fire McCullogh–Pitts neuron stylisation [1]. In such alternative
analogy, neurons can be seen as a set of RAM nodes addressed by Boolean inputs
and producing Boolean outputs. The shortening of the semantic gap between
the synaptic–centric model introduced by the McCullogh–Pitts neuron and the
dominating, binary digital, computational environment, is among the interesting
benefits of the weightless neural approach.

WiSARD [2] is a RAM–based neural network model developed by Igor Alek-
sander at Brunel University in the 1984. RAM–based neural networks essentially
use look up tables to store the function computed by each neuron, and hence are
easily implemented in digital hardware and have efficient training algorithms.

Although WiSARD was designed as a pattern recognition device mainly fo-
cusing on image processing domain, in this paper we show how it is possible to
build a multiclass classification method in ML domain based on WiSARD com-
puting model. As far as we know this is the first proposal of a general–purpose
ML method that uses WiSARD as base technique for learning/classification.

The second contribution of this work is to show how the proposed WiSARD–
based method for ML, that we called WiSC (WiSARD C lassifier), has, in
the average, performances comparable to those of the most state–of–the–art
ML methods found in literature. This statement is validated by the statistical
analysis carried out on a set of experiments consisting in running a set of ML
classifiers, including WiSC, on datasets publicly available on the KEEL archive.

2 WiSARD in numeric and symbolic domain

WiSARD (Wilkes, Stonham and Aleksander Recognition Device) was the first
artificial neural network machine to be patented and produced commercially
[2]. WiSARD is composed of a set of classifiers, called discriminators, each
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one assigned to learn binary patterns belonging to a particular class. Each
discriminator consists of a set of RAM neurons. Each RAM has a number of
input entries given by the binary address formed by its corresponding input
subpattern. In training mode, an addressed pattern is stored in a RAM position
as an integer value different from zero; non–addressed entries remain zero. In
classification mode, each discriminator outputs the number of addressed RAM
positions, for which the address was energized in training mode. Given a binary
pattern of size S, the so–called retina, it can be classified by a set of WiSARD
discriminators, each one having m RAMs with 2n cells such that S = m×n. For
a more accurate description of WiSARD and other WNN please refer to [3][4][5].

Being WiSARD a pattern recognition device, it mainly accepts black and
white images as input. With ad hoc data transformation, WiSARD can be also
successfully used as multiclass classifier in ML domain. Indeed, if we consider
numeric data domains in which each datum can be represented by a vector of
features (attributes), we can adopt the well–known LibSVM [6] or CSV format
to represent numeric data such that each datum (sample) of a training set can
be represented in the form: s = 〈ci, f0 : v0, . . . , fj : vj〉; where ci is the class
identifier (a string or a number) the datum belongs to, fj and vj are respectively
a feature identifier (a string or a number), and its value (a real number, an integer
or a nominal) inside the feature vector representing the datum.

In order to feed WiSARD with such data, they need to be converted to binary
patterns. First of all, feature values v in the numeric range [vmin, vmax] have to
be discretized and scaled to integers v in the interval [0, n]. Doing so, any real
number v ∈ [vmin, vmax] will be represented by the non–negative integer:

v =

⌈
(v − vmin)× n

vmax − vmin

⌉
. (1)

Thus, under the transformation of Equation 1, the dataset sample format be-
comes: sample = 〈ci, f0 : v0, . . . , fj : vj〉; where v0, v1, . . . , vj are non–negative
integers in the range [0, n]. For example, let us consider a training set of class
c, called TSc, composed of 4 samples (|TSc|=4). The scaled and discretized
feature (in the range [0, 4]) will make the new samples of TSc looking as:

s0 = 〈1, f0 : 2, f1 : 1, f2 : 3〉, s1 = 〈1, f0 : 2, f1 : 2, f2 : 3〉,

s2 = 〈1, f0 : 3, f1 : 2, f2 : 4〉, s3 = 〈1, f0 : 4, f1 : 0, f2 : 4〉.

Samples can be represented by binary patterns through the thermometer encod-
ing, that guarantees close values of vj will correspond to binary patterns with
small Hamming distance (see left pictures of samples). With the transformation
of Equation 1, numeric datasets can be now used both for training and classifi-
cation in WiSARD systems. With ad hoc transformations [7], WiSARD can also
treat symbolic data, like nominal (also called categorical) and ordinal datatypes.

The ML method proposed in this work, called WiSC, exploits learning/classifi-
cation capabilities of WiSARD with the support of the above data transforma-
tions for numeric/symbolic data processing. WiSC was developed as part of the
sklearn library1 and it is compliant to its programming interface.

1http://scikit-learn.org
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(a)
Acronym Name

Artificial Neural Networks
MLP Multi Layer Perceptron
WiSC WiSARD Classifier

Base Learners
LDA Linear Discriminant Analysis
LR Logistic Regression

kNN k–Nearest Neighbors
SVC SVM with RBF kernel

Ensemble Learners
GTB Gradient Tree Boosting
RF Random Forrest

ERT Extremely Randomized Trees

(b)
Name Features Instances Classes

Real Int. Nom.
ecoli 7 – – 336 8
pima 8 – – 268 2
segment 19 – – 2310 7
wine 13 – – 178 3
dermatology – 34 – 358 6
penbased – 16 – 10992 10
vehicle – 18 – 846 4
wisconsin – 9 – 683 2
breast – – 9 263 2
splice – – 60 3175 3
heart 1 12 – 270 2
ionosphere 32 1 – 351 2
vowel 10 3 – 990 11
german – 7 13 1000 2
lymphography – 3 15 148 4
automobile 15 – 10 150 6
australian 3 5 6 690 2
crx 3 3 9 653 2

Table 1: Methods (a) and datasets (b) used in WiSC performance evaluation

3 Related Works

The generality of WNN systems allowed them to be used in past years also as
multi–discriminator classifiers in several ML domains, ranging from text cathe-
gorisation [8] to HIV–1 subtypes classification [9], from language POS–tagging
[7] to WiFi signal pattern recognition [10]. All the cited works are specific ap-
plications of WNNs to a problem domain, and the proposed WNN systems are
tuned and configured to optimally behave in the target ML domain.

On the contrary, WiSC is a domain–independent classification method for
ML, in the sense that it can apply to every problem with no ad hoc configuration.
WiSC is configured by two parameters: 1) bit–addressing resolution (b), and
2) data scaling factor (n). By running under the default configuration (b=16,
n=1024) WiSC can perform as classifier for any dataset, provided that data are
available in the LibSVM or CSV format.

Apart from MLP, the other algorithms considered in this work (see Table 1a)
do not fall in the category of neural network algorithms. Since those algorithms
exploit approaches different from neural models (statistical, clustering, decision
trees, ensembling, etc.), the comparisons between WiSC and those classifiers
could be made only in terms of performance. In what follows, we provide a set
of ML methods with their categorization and references in the ML literatures.

The Logistic Regression [11] (LR) falls in the category of generalized linear
models. The Support Vector Classifier [12] (SVC ) is the only considered method
based on SVM and it is applied with a non–linear kernel (RBF). Methods like
Random Forests [13] (RF ), Extremely Randomized Trees [14] (ERT ), and Gra-
dient Tree Boosting [15] (GTB) all fall in the category of decision–tree learning
algorithms. GTB is a boosting methods that combine decisions–tree classi-
fiers. The list of reference methods ends up with Linear Discriminant Analysis
(LDA) and k–Nearest Neighbors (kNN ) that are unique representatives of the
corresponding learning method categories: Linear and Quadratic Discriminant
Analysis [16] and Nearest Neighbor [17] algorithms.

To better refine the categorization of methods, LDA, LR, and kNN are base
learning methods while the rest are ensemble methods [18]: in particular, RF
and ERT are bagging meta–estimators based on decisions–tree classifiers.
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WiSC MLP RF ERT GTB LDA kNN LR SVC
australian 0.85015 0.86261 0.84638 0.84493 0.86435 0.86203 0.65275 0.85623 0.54667
automobile 0.81000 0.61750 0.80125 0.84125 0.88125 0.74750 0.39125 0.70625 0.28375
breast 0.71407 0.74222 0.70667 0.69926 0.71185 0.74963 0.73704 0.74815 0.75926
crx 0.85000 0.86970 0.85818 0.84909 0.87061 0.86576 0.65758 0.87242 0.54818
dermatology 0.97889 0.96611 0.96000 0.97222 0.95167 0.96167 0.86944 0.97333 0.92444
ecoli 0.85471 0.71000 0.82412 0.83529 0.81176 0.77706 0.82941 0.79941 0.43177
german 0.74420 0.76320 0.73600 0.72840 0.76360 0.77100 0.69200 0.76920 0.71980
heart 0.83259 0.84074 0.79111 0.79852 0.79852 0.83926 0.68444 0.83852 0.54444
ionosphere 0.92889 0.85833 0.93278 0.93778 0.94556 0.87111 0.85222 0.87889 0.93778
lymphography 0.81733 0.80533 0.79067 0.80800 0.82000 0.81333 0.75333 0.79200 0.77600
penbased 0.99213 0.92131 0.98731 0.99062 0.98967 0.87518 0.99318 0.92696 0.10364
pima 0.76390 0.75429 0.73377 0.75740 0.75740 0.72467 0.77792 0.64208 0.64208
segment 0.97628 0.88329 0.97584 0.97584 0.98260 0.91671 0.94442 0.92840 0.62719
splice 0.94094 0.84233 0.93981 0.93340 0.97120 0.84516 0.78157 0.84837 0.91516
vehicle 0.75294 0.63365 0.75294 0.61365 0.46588 0.71271 0.74777 0.72988 0.72988
vowel 0.98808 0.45172 0.92283 0.95919 0.89475 0.61232 0.93374 0.53434 0.86970
wine 0.99000 0.97000 0.97444 0.96889 0.96111 0.99222 0.70556 0.95667 0.42667
wisconsin 0.97217 0.96522 0.96696 0.96783 0.96783 0.96029 0.97275 0.96435 0.96087

Table 2: Average accuracy on 50 repetitions of a 10–fold cross–validation

Method Friedman Aligned Friedman Quade
WiSC 2.917 (1) 53.806 (1) 2.664 (1)
GTB 3.694 (2) 60.861 (2) 3.661 (2)
ERT 4.527 (3) 65.972 (4) 4.140 (3)
RF 4.889 (4) 64.944 (3) 4.474 (4)
LDA 5.056 (5) 85.000 (5) 5.205 (5)
LR 5.111 (6) 83.389 (6) 5.374 (6)
MLP 5.556 (7) 95.167 (8) 5.842 (8)
kNN 5.944 (8) 102.611 (9) 5.713 (7)
SVC 7.1154 (9) 86.8846 (7) 7.927 (9)

Distribution χ2 χ2 F -distribution
Degrees of fredom 8 8 with 8 and 136
Statistic 30.748 15.468 5.196
p-value 1.558×10−4 0.050 1.128×10−5

Table 3: Multiple comparison of method performances by nonparametric tests

4 Performance Evaluation Through Statistical Analysis

In order to evaluate the performance of WiSC we choose to test it on a set of N
(N=18) classification problems listed on Table 1b. All problems were selected
from a list of 76 standard classification datasets available on the KEEL Archive.2

The aim of the experimental study is to compare accuracy of WiSC with that
of other classification methods (see Table 1a) available in the sklearn library.
We measured classification accuracy of each method on the N chosen datasets,
that is the average of accuracies over 50 repetitions of a ten–fold cross validation
on each dataset. Random splits of each dataset were prepared to form 50 pairs
of train and test sets. All methods worked on the same 50 pairs of sample sets.

In all experiments no features selection was carried out, as well as the default
configuration was used for all methods independently on the target problem
domain, size and feature type combination. This fair assumption is due, one side,
to the difficult and time–consuming task of finding the optimal configuration for
each method when applied to a specific problem, and, on the other side, to the
intention of testing each method “as it is” regardless of the specific problem.
The average accuracy over 50 experiments for each method running on each
dataset is reported in Table 2. The best average accuracies across all methods
are underlined, while the worst performances are in italic.

Methods performances are evaluated by multiple comparison nonparametric
tests: the Friedman test [19], the Aligned Friedman test [20], and the Quade

2Available at http://sci2s.ugr.es/keel
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WiSC versus GTB ERT RF LDA LR MLP kNN SVC α†

unadjusted p 3.94·10−1 7.76·10−2 3.07·10−2 1.91·10−2 1.62·10−2 3.84·10−3 9.11·10−3 1.53·10−6 0.05
z 8.52·10−1 1.76 2.16 2.34 2.40 2.89 3.32 4.81
pHolm 4.54·10−3 2.27·10−3 2.0·10−3 1.92·10−3 1.79·10−3 1.56·10−3 1.47·10−3 1.38·10−3 1.51·10−3

pShaffer 4.54·10−3 2.27·10−3 2.0·10−3 1.92·10−3 1.79·10−3 1.79·10−3 1.79·10−3 1.38·10−3 1.79·10−3

Table 4: Pairwise comparisons between WiSC and the rest of methods

test [21]. Before starting the statistical analysis we define the null hypothesis:

H0 = accuracy distributions over N datasets of all methods are the same.

In Table 3 methods’ rankings according to the three statistic tests are reported.
Methods are ordered according to the Friedman test ranking. In each column
the rank is reported with the relative position. As one can notice, WiSC method
ranks first in all tests. By comparing the p–values of the three statistics with the
significance level α (0.05) we can assert that H0 is rejected by all tests. Then, we
can proceed with post–hoc tests to carry out all possible pairwise comparisons
of methods (N×N comparison). In particular, we test the set of hypotheses:

HX,Y = accuracy distributions over N datasets of method X and Y are the same.

Two classic procedures used for the purpose are the Holm [22] and the Shaffer
[23] tests. These tests adjust the significant level α (0.05) to a new reference value
α†. Both tests are used to compute the p–values of each pairwise comparison of
methods. In Table 4 comparison results of WiSC with the rest of algorithms are
reported: gray cells represent rejected hypotheses resulting from the comparison
of the p–value, as computed by the test, with respect to the corresponding α†.

The comparison analysis of Table 4 proves that both Holm and Shaffer test
reject the hypotheses HWiSC,kNN and HWiSC,SV C , while the Shaffer test rejects
even HWiSC,LR and HWiSC,MLP . Therefore, by considering the null hypotheses
which are not rejected by both tests, we can statistically assert likely the equiva-
lence of WiSC to methods in the set {GTB,ERT,RF,LDA} in term of accuracy
performance over the chose N datasets. By considering the magnitude of the
significant value (p–value), we deduce that WiSC is “more significantly” equiv-
alent, in terms of performance, to GTB. This result is even more relevant if we
consider that GTB is an ensemble learning method, while WiSC is a base learn-
ing method. The statistical analysis assigns the best ranking to WiSC, in terms
of average accuracy on the chosen datasets (see Table 3), as well as it proves
that WiSC outperforms other base learners (the set {LR, kNN,SV C,LDA}).

5 Concluding Remarks

In this work a WiSARD–based classifier for ML has been proposed, namely
WiSC. When tested on a large dataset archive, WiSC proved to be equivalent
to some of the most performant ensemble learning techniques in the ML state–
of–the–art, such as Gradient Tree Boosting, Radom Forrest, Extra Randomized
Trees. Although WiSC performs better than weighted ANNs counterpart meth-
ods, it still have processing times greater than the equivalent methods. Just to
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evaluate an order of magnitude of timing, WiSC runs three times slower than
GTB and five times slower than ERT and RF. We will further investigate op-
timization techniques to improve WiSC performance, both in terms of RAM
neuron memorization strategy as well as data input encoding.
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