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David Mart́ınez-Rego, Diego Rego-Fernández

Department of Computer Science, University of A Coruña
Faculty of Informatics. Campus de Elviña s/n. - A Coruña. Spain.

{ofontenla, diego.rego, cibertha, dmartinez, bperezs}@udc.es

Abstract. In this work, a new learning method for one-layer neural net-
work based on a singular value decomposition is presented. The optimal
parameters of the model can be obtained by means of a system of linear
equations whose complexity depends on the number of samples. This ap-
proach provides a fast learning algorithm for huge dimensional problems
where the number of inputs is higher than the number of data points.
These kinds of situations appear, for example, in DNA microarrays sce-
narios. An experimental study over eleven microarray datasets shows that
the proposed method is able to outperform other representative classifiers,
in terms of CPU time, without significant loss of accuracy.

1 Introduction

The medical field has traditionally been an area for successful applications of
Machine Learning (ML). With the fast and high increase of big databases some
new problems have emerged in ML, one of them related with the scalability of
algorithms. The lack of scalability is the reason that many of the classical and
outstanding algorithms are unable to work properly, due either to their poor
performance or because their computational needs are unapproachable. Most of
the efforts of the Big Data community working on scalability have been centered
on improving the scalability with regards to the number of training samples.
However, there exists some situations in which the limiting condition is related
to the number of input variables or features. This is the case of some medical
data and, specifically, the case of deoxyribonucleic acid (DNA) microarrays. One
of the most important applications of DNA microarrays is the classification and
prediction of cancer. This type of data encloses a few number of samples while
at the same time presents a large dimensionality of the feature space, commonly
a number of samples below 100 versus many thousands of genes. These inherent
characteristics seriously narrow the application of classical machine learning al-
gorithms leading to diminished performance and increasing their computational
complexity. Consequently, handling of microarray data emerges as a challenge
for the research community.

In a previous research [1] we introduced a supervised learning method for
single-layer feedforward neural networks. The novelty arises in the inclusion of a
convex objective function, equivalent to the MSE, that avoids local minimal and
obtains a global solution by means of a system of linear equations. The method
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exhibits a fast operation with a quadratic complexity with respect to the number
of input variables. This fact implies that in those contexts where the number
of features is extremely large, e.g. microarray, the complexity of the method
significantly increases. To overcome this problem and facilitate the handling of
this kind of data, in this paper we present a modification of the method, without
loss of its favourable characteristics, with a quadratic complexity with respect
to the number of samples instead of input variables.

2 Background

As mentioned, the method presented in this paper is funded on a previous learn-
ing algorithm [1] that will be briefly described in this section for the sake of
comprehension. Specifically, it is a supervised algorithm that obtains the opti-
mal weights of a one-layer feedforward neural network (i.e., no hidden layers)
with non linear output functions. In contrast to some other well-known algo-
rithms it backpropagates the networks’s desired output signal instead of the error
between the desired and the real outputs. In Figure 1 this process is depicted
graphically for only one output neuron in order to avoid a cumbersome deriva-
tion although solving the problem for J output neurons is straight by applying
the same process for every neuron.

Let S be the number of training data samples, I the number of input variables
(including the bias), X ∈ R

I×S be the input of the neural network; d, y ∈ R
S

be the desired and real outputs; w ∈ R
I be the weight vector connecting the I

input neurons with the output neuron; and f ; f−1; f ′ : R → R be the non linear
function, its inverse and its derivative. If the desired output is backpropagated,
i.e. d̄ = f−1(d), then the optimal set of weights can be obtained by minimizing
the MSE between z = XTw and d̄ which leads to following system of linear
equations:

Aw = b (1)

where A and b are defined as [1]:

A = XFFXT ; b = XFFd̄ (2)

F = diag(f ′(d̄1), f
′(d̄2), . . . , f

′(d̄S)) being a diagonal matrix.

This algorithm is very computationally efficient in the most frequent cases
in ML problems where S >> I, as the size of the system of linear equations in
(1) depends on I. However, in situations where I >> S, like DNA microarrays,
the computational performance degrades as the size of the system is very large.
In this last case, the calculation of matrix A in equation (2) and its inverse,
necessary to obtain the optimal weights (w) from equation (1), is highly compu-
tational demanding. In this work, we propose a transformation of the algorithm
to be efficient also in this second scenario.
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Figure 1: Architecture of a single-layer feedforward neural network.

3 Optimizing the learning algorithm by Singular Value

Decomposition

Taking equations (1) and (2) as a starting point, a new equation system arises
as follows:

XFFXTw = XFFd̄

By replacing H = XF, this system can be rewritten as:

HHTw = HFd̄ (3)

If a factorization of matrix H is performed by applying the Singular Value De-
composition (SVD) method then H = USVT . In the full (standard) SVD
U ∈ R

I×I , S ∈ R
I×S and V ∈ R

S×S but in practice the reduced (economy)
SVD form can be computed. It contains all the information as the full SVD
but is cheaper to compute. In that case, S ∈ R

P×P is a square matrix where
P = min(I, S). Taking this into account and that S is a diagonal matrix, then
S = ST . Replacing H by its SVD in equation (3) we obtain:

USVTVSUTw = USVTFd̄

Removing U from both sides of the equation obtains:

SVTVSUTw = SVTFd̄
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Considering Z = VS and consequently ZT = SVT the equation is transformed
into:

ZTZUTw = ZTFd̄

that can be further transformed into:

UTw = (ZTZ)−1ZTFd̄

Finally, considering the properties of the SVD, it holds that UTU = I and
(UT )−1 = (U−1)T = (UT )T = U. Using these results, the optimal weights can
be obtained using the following equation:

w = U(ZTZ)−1ZTFd̄

As can be observed, with this new approach it is necessary to compute the
inverse of ZTZ, a S × S matrix, so a computational advantage is obtained for
problems where I >> S.

4 Experimental results

The following experiments try to demonstrate how the formulation from sec-
tion 3 behaves, with respect to accuracy and computational time, when dealing
with microarray datasets, whose characteristics are a high number of features
and small sample sizes. Eleven public datasets available at [2][3][4][5] and sum-
marized in Table 1 are used to test the method. All datasets represent binary
problems. The proposed method was compared against the original One Layer
method (OL) explained in Section 2 together with other three representative
classifiers: the classical Support Vector Machine (SVM ) [6], a SVM using a Ra-
dial Basis Function as kernel function (SVM (rbf)), and the well-known Fisher
linear discriminant (Fisher) [7]. Simulations were carried out using a Intel Xeon
W3550 processor with 3.07GHz clock speed and 11,7Gb RAM.

Dataset Instances Features
Brain 21 12,625
CNS 60 7,129
Colon 62 2,000
Prostate 102 12,600
Breast 78 24,481
Lung 181 12,533
DLBCL 77 5,469
Leukemia 38 7,129
Ovarian 253 15,154
Gli85 85 22,283
Smk 187 19,993

Table 1: Description of datasets

Table 2 shows the mean Area Under the Curve (AUC) and standard devia-
tion obtained by each method. In order to get significant results 10-fold cross-
validation was employed and every experiment was repeated 30 times. As can be
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seen, the proposed method (OL-SVD) and the original (OL) obtain exactly the
same values, since these methods are mathematically equivalent, according to
section 3. However, there are three cases (marked with an asterisk) in which the
OL method is unable to obtain a solution as it exceeds the RAM memory when
trying to compute the inverse of the I×I features matrix. Furthermore it can be
concluded that, in terms of AUC, the proposed method performs at least as well
as other conventional methods such as SVM or Fisher linear discriminant. It is
important to note that some other methods, like the logistic regression method,
were not included because of their very high CPU time demands (around 40
times the OL-SVD needs in the case of logistic regression).

OL OL-SVD SVM SVM (rbf) Fisher
Brain 0.54 ± 0.07 0.54 ± 0.07 0.50 ± 0.00 0.50 ± 0.00 0.46 ± 0.02
CNS 0.64 ± 0.03 0.64 ± 0.03 0.50 ± 0.07 0.50 ± 0.03 0.50 ± 0.04
Colon 0.83 ± 0.02 0.83 ± 0.02 0.62 ± 0.07 0.78 ± 0.02 0.75 ± 0.02
Prostate 0.90 ± 0.01 0.90 ± 0.01 0.81 ± 0.05 0.78 ± 0.02 0.79 ± 0.02
Breast * 0.69 ± 0.02 0.65 ± 0.02 0.54 ± 0.03 0.66 ± 0.03
Lung 1.00 ± 0.00 1.00 ± 0.00 0.88 ± 0.03 0.99 ± 0.01 0.99 ± 0.01
DLBCL 0.99 ± 0.01 0.99 ± 0.01 0.79 ± 0.05 0.89 ± 0.01 0.93 ± 0.02
Leukemia 1.00 ± 0.00 1.00 ± 0.00 0.87 ± 0.05 0.82 ± 0.04 0.74 ± 0.02
Ovarian 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.01 1.00 ± 0.00
Gli85 * 0.94 ± 0.01 0.50 ± 0.01 0.79 ± 0.02 0.82 ± 0.02
Smk * 0.80 ± 0.01 0.75 ± 0.02 0.72 ± 0.01 0.70 ± 0.02

Table 2: Mean AUC and standard deviation for the test set (%). Best results
are boldfaced

A second comparison was made in terms of computational time. In this
case, the CPU time is counted 10 times for each method training with all data
in each dataset. These results are shown in Table 3. As can be observed, the
new proposed method considerably improves OL method and also overcomes the
other proved methods.

OL OL-SVD SVM SVM (rbf) Fisher
Brain 1058.52 ± 10.86 0.01 ± 0.01 0.06 ± 0.11 0.05 ± 0.05 0.46 ± 0.15
CNS 183.70 ± 0.50 0.04 ± 0.04 2.04 ± 0.14 0.05 ± 0.00 0.24 ± 0.04
Colon 3.74 ± 0.18 0.02 ± 0.02 2.12 ± 0.15 0.03 ± 0.00 0.07 ± 0.00
Prostate 1230.39 ± 79.09 0.17 ± 0.03 3.08 ± 2.53 0.29 ± 0.03 0.74 ± 0.05
Breast * 0.37 ± 0.04 0.23 ± 0.03 0.36 ± 0.02 2.19 ± 0.48
Lung 1338.19 ± 8.64 0.25 ± 0.03 5.33 ± 0.28 0.23 ± 0.02 0.88 ± 0.03
DLBCL 106.10 ± 1.84 0.03 ± 0.01 2.31 ± 0.14 0.05 ± 0.00 0.19 ± 0.02
Leukemia 232.58 ± 2.41 0.01 ± 0.00 1.00 ± 0.06 0.04 ± 0.00 0.21 ± 0.01
Ovarian 2086.65 ± 23.44 0.64 ± 0.05 0.20 ± 0.02 0.71 ± 0.07 1.62 ± 0.06
Gli85 * 0.22 ± 0.02 2.41 ± 0.12 0.23 ± 0.01 1.56 ± 0.07
Smk * 0.38 ± 0.02 0.50 ± 0.02 0.83 ± 0.02 1.74 ± 0.06

Table 3: Mean CPU time (s) and standard deviation. Best results are boldfaced
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5 Conclusions

OL is successful over datasets with more samples than features, but, when the
number of features increases its computational performance falls. In this sce-
nario, methods like SVM or Fisher are recommended, but with these algorithms
the opposite occurs: neither SVM nor Fisher have a good computational perfor-
mance when the number of samples is very high. In this paper, a modification
based on OL called OL-SVD was introduced to avoid problems with higher num-
ber of features than samples, like microarray data sets. While OL-SVD does not
represent a huge improvement over other methods like SVM, the advantage of
OL-SVD is that, with a few modifications, it could automatically adapt to ef-
ficiently deal with both scenarios, more features than samples and vice versa.
This new mechanism, that will be included in upcoming work, will suppose an
improvement over other methods included in this work. Meanwhile, OL and
OL-SVD are the perfect blend to deal with data sets with high variability of
features and samples. Moreover it could be used as a constructive block for
more complex paradigms like a layered learning algorithm, such as deep learn-
ing, or in a feature selection scenario as a fast classifier for a wrapper method.
Finally, an additional line of research is the extension of the method by using
some kind of regularization mechanism.
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