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Abstract. In this paper we provide a broad framework for describing
learning agents in general quantum environments. We analyze the types
of classically specified environments which allow for quantum enhance-
ments in learning, by contrasting environments to quantum oracles. We
show that whether or not quantum improvements are at all possible
depends on the internal structure of the quantum environment. If the
environments have an appropriate structure, we show that near-generic
improvements in learning times are possible in a broad range of scenar-
ios.

Introduction In the last few years there has been an increasing interest
in the potential of quantum improvements in aspects of machine learning and
artificial intelligence. For example, the theory and algorithms for classification
and clustering utilizing quantum mechanics [4, 5, 1, 6, 2, 3], in both supervised
and unsupervised settings have been provided. In the setting of reinforcement
learning (RL) [7] quantum information processing has been used to reduce
space or time complexity of particular learning algorithms [8, 9]. However,
for the general setting of RL, where a learning agent and a task environment
interact quantum-mechanically, no framework or results have been, to our
knowledge, presented so far.

Here, we provide the first steps in this direction. We provide a framework
for describing quantum learning agents in general task environments. We
analyze the types of environments which allow for quantum enhancements, by
contrasting environments to quantum oracles. We show that whether or not
quantum improvements are at all possible depends on the internal structure of
the quantum environment. If the environments has a suitable structure (allows
for oracular access), improvements in learning times are possible in a broad
range of scenarios that we call luck-favoring settings. The results we provide
are also particularly relevant for the class of model-based learning agents [10].

Classical and quantum agent-environment interaction  The stan-
dard turn-based RL paradigm comprises the percept (S) and action (A) sets
which specify the possible outputs of the environment, and the agent, respec-
tively. The agent and the environment interact by sequentially exchanging
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elements from the percept/action sets. A realized interaction up to time
step t, between the agent and the environment, that is a sequence h; =
(517 A2, 53,84, -+,5t—1, at), s; € S,a5 € A of alternating percepts and actions
is called the t—step history of interaction. At the t*" time-step, and given
the elapsed history h;_1, the behavior of the agent at step t is given by the
map Mzt’l(s € 8) € distr(A), where distr(X) denotes the set of probability
distributions over the set X'. The realized agent’s action, given history h;_1,
is sampled from the distribution Mzt’l (s € S). The environment is specified
analogously. The basic diagram illustrating agent-environment interaction is
given in Fig. 1 (a).
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Fig. 1: (a) Classical agent-environment interaction. The maps of the agent and environment
may depend on the entire elapsed histories. (b) General interaction between an agent and an
environment. There is a unique communication register R¢, visible to both the agent and the
environment. The crossed wires represent multiple systems.

The notion of a reward A € A in RL (specifying whether a performed ac-
tion, or a sequences thereof were ‘correct’) can be w.l.g. subsumed into the
percept space. All the standard figures of merit regarding the learning per-
formance of an agent are functions of the realized history. They are often
convex-linear, enabling statements about average performance. Thus, the in-
teraction history is the fundamental object in RL, which we aim to maintain
even in the quantum setting.

In an extension of the above framework to a quantum setting, we pro-
mote the percepts/actions to orthogonal states (percept/action states) of the
percept/action Hilbert spaces Hs = span{|s;)}; and H a4 = span{|a;)};. The
agent, and the environment, contain internal memory: finite (but arbitrarily
sized) internal registers Ra and Rp which can store histories, with Hilbert
spaces of the form H4 ® Hs @ H.a---. We jointly the percept/action states,
their probabilistic mixtures, and sequences thereof, classical states. To model
the interaction we define a common communication register R, with associ-
ated Hilbert space He = {|z)|x € SU A} sufficient to represent both actions
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and percepts (action and percept spaces are orthogonal)!. The agent (envi-
ronment) is then specified by sequences of completely positive trace preserving
(CPTP) maps {M#}; ({MF},) acting on the concatenated registers R4 Rc
(RcREg), initialized in a fiducial classical product state. Finally, an agent-
environment interaction is defined as the sequential application of the maps,
illustrated in Fig. 1 (b).

Classical agents (environments) are those whose maps do not generate non-
classical states, given classical states of the internal and the communication
registers. Slightly more generally, an agent and environment have a classical
interaction if, at every stage of the interaction, the joint state of registers
RARcRE is separable w.r.t the three partitions, and the state of R¢, post-
selected on any outcome of any separable measurement of R4 Ry is a classical
state?. To maintain a robust notion of history, we introduce testers, systems
which monitor the interaction, and record it in its own memory Rp. Testers
we consider are sequences of controlled maps of the form

U,Z (|x>RC ® |1/)>RT) = |x>RC ® Ukz|1/)>RT

where z € SU A, and {U7}, are unitary maps acting on the register Ry, for
all steps k. A tested interaction is shown in Fig. 2. If all the maps of the
tester copy® the classical states we call it a classical tester. A sporadic classical
tester allows periods of untested interaction (i.e. some maps are identities).

. " T
Re = op ME o ME

Re -H

Rr ] T o7l lvz_,1 vz

Fig. 2: Tested agent-environment interaction. Note that, in general, each map of the tester
UkT acts on a fresh subsystem of the register Rp, which is outside the control of the agent and
environment. The crossed wires represent multiple systems.

The (generalized) history of interaction is given by the reduced state of the
register Ry, and in the case of classical agents, environments and tester, we re-
cover the classical definition of history. With the quantum framework in place
we obtain the basic results (Lemmas 1-3 in [11]): 1) an agent-environment
interaction is classical iff the state of RaRcREg is the same in the presence
of a classical tester; 2) no quantum improvements are possible if the inter-
action is classical, relative to any tester; 3) no quantum improvements are

LA more general definition of an interaction, where in the spirit of robotics and embodied
cognitive sciences we separate the interfaces of the agent and the environment, is provided
in [11].

2Classical interaction still allows that the internal information processing of the agent
and environment includes non-classical states, e.g. an internal quantum computer. How-
ever, neither the agent or environment are allowed to output non-classical states, or to be
entangled to the communication register R¢.

3By ‘copy’ we mean the map |z)|e) — |z)|z) Vo € SU A, for some fixed state |e).
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possible, relative to the classical tester. Here, by no ‘quantum improvement’
we mean that for any quantum environment/agent, there exist a classical envi-
ronment/agent, which generate the same history, given the same tester. These
basic results also show no generic quantum improvements are possible just by
granting ‘quantum access’ to a classically specified environment. Specifically,
every classical specification of an environment can be realized by a sequence of
quantum maps which also simulate classical testing, preventing any quantum
improvement relative to any tester by Lemma 3.

Quantum improvements in learning We now focus on categorical exam-
ples of (classical) task environments, and consider settings in which learning
improvements are possible. Specifically, we focus on epoch-type environments.
In such environments, the internal state of the environment is periodically re-
set: e.g. in chess playing, after a player looses, the board is re-set; similarly, in
maze navigating problems, once the walker (agent) has found the goal (exit),
it is returned to the initial position, and the task is repeated. Our overall ap-
proach is based on contrasting environments to oracles as utilized in quantum
algorithms. Although standard environments do not match the specification
of oracles (e.g. the actions of the agent are lost to the environment, and
not returned), for the class of epoch-type task environments E, we can define
oracular instatiations E4 of the classically specified environment E, which are
unitary. Using these types of instatiations, the agent can perform amplitude
amplification[12] in order to obtain a rewarding sequence of actions. Given a
classical environment F, which the agent can, at will, access in its classical
(E) or oracularized instantiation (F,), we call controllable environment.

The capacity to find correct sequences of actions faster alone says nothing
about the learning capacities of the agent. Nonetheless, an exploration stage,
i.e. searching, must precede an exploitation stage, and the correct interplay of
these two phases is a well-studied problem in RL [7, 10]*. To formalize the intu-
ition that already faster searching may aid in learning, we define luck-favoring
settings. Roughly speaking, a learning model/agent A and an environment E
are luck-favoring, relative to some figure of merit R, if a lucky agent (one which
by chance alone finds many correct sequences of action during an early stage)
outperforms an unlucky agent (one which does not) in F, after this early stage
and relative to R. We highlight that most benchmarking task environments
are luck favoring with most learning models, relative to standard figures of
merit (e.g. finite-horizon average reward).

Combining the notions of luck-favoring settings, the capacities of quantum
agents to explore faster, and the notion of a sporadic classical tester, we prove
the following result (Theorem 1 in [11]):

Main Theorem (informal) Given a classical learning agent A, and a con-
trollable, classically specified epochal task environment E such that (A, E) are
luck-favoring relative to some figure of merit R, there exists a quantum agent

4A related interplay occurs in optimization problems, where a local minimum is often
rapidly found, and can be used. However, this opens the possibility that we are missing out
on a global minimum.
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AT which outperforms A in R, relative to a chosen sporadic classical tester.

The basic idea is for the quantum agent A? to use quantum, and untested,
access to I, to obtain instances of winning sequences in quadratically reduced
time. Given these sequences, A? will, internally, and by using no interac-
tion steps, ‘train’ a simulation of A. Eventually, the simulation will get lucky
(call this successfully trained simulation Ajycry). Then A7 relinquishes con-
trol to Ajucky, and forwards percepts and actions between Ajycr, and the
environment, under the classical tester. As the setting is luck-favoring, the
main claim follows. For some settings even an exponential separation (in task
environment size) can occur, in performance between quantum and classical
agents. Exponential separations occur when lucky instances occur exponen-
tially infrequently (e.g. mazes with low connectivity). In this scenario, a
quantum agent can find a successful instance with near unit probability while
the classical agent still has an exponentially small chance of the same outcome.
For time-limited games, this is a relevant exponential improvement.

In the remainder of this work, we show how our approach can be general-
ized to a wider class of task environments, with minor changes to the definition
of the oracular instantiation of the environments. Following this, we consider
the problem of oracularization of environments and identify two possibilities
in which this can be achieved. The first considers so-called model-based learn-
ing agents (MBLA) where the agent constructs an explicit representation of
the task environment, and uses it to find optimal responses. In this setting
the internal environment is constructed, so our approach provides a generic
method for speeding up the internal processing of the agent. The second pos-
sibility considers additional options to the agent, including limited access to
the internal registers of the environment, using which the agent can manipu-
late the environment E to behave like the oracular instantiation. While these
options may not always be realistic, again in the setting of MBLA they pro-
vide a generic method of transforming classically specified environments to
oracularized instantiations.

The framework we have established is a quantum generalization of rein-
forcement learning. This generalization maintains the key notion of history
through the concept of a tested interaction. We have presented first results
which show quantum improvements in learning in classically specified environ-
ments. In the framework we established, other improvements for learning in
unknown environments may be possible if different types of testers are consid-
ered.
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