
Visualizing Stacked Autoencoder Language
Learning

Trevor Barron and Matthew Whitehead ∗

Colorado College - Department of Mathematics and Computer Science
14 E. Cache La Poudre St., Colorado Springs, CO 80903 - USA

Abstract. Visualizing the features of unsupervised deep networks is an
important part of understanding what a network has learned. In this pa-
per, we present a method for visualizing a deep autoencoder’s hidden layers
when trained on natural language data. Our method provides researchers
insight into the semantic language features the network has extracted from
the dataset. It can also show a big picture view of what a network has
learned and how the various features the network has extracted relate to
one another in semantic hierarchies. We hope that these visualizations
will aid human understanding of deep networks and can help guide future
experiments.

1 Introduction

In this paper, we present a visualization procedure for deep machine learning
networks of stacked autoencoders (a neural network consisting of multiple lay-
ers of sparse autoencoders in which the outputs of each layer are connected
to the inputs of the successive layer) trained on natural language data. After
processing large amounts of text data, the networks learn different language
features with representations stored within their hidden layers. We take these
trained networks and then generate images that help show each of the learned
language features. Our method is analogous to the methods used in computer
vision research, but since we are working with text data, we use a different
visualization technique that incorporates word cloud images and t-SNE plots.
We hope that our visualization technique will help NLP researchers analyze
and understand their networks more easily. Our software is publicly available:
https://github.com/tpbarron/CaffeAutoencoderViz

Research in computer vision with deep networks often includes images show-
ing the visual features particular hidden nodes have learned to recognize. These
images are generated by calculating the pixel values that maximally activate a
particular hidden node. For example, [1] shows maximally activated input im-
ages for several hidden layers of a deep network trained on images of human
faces. The detected features on different levels of the network correspond with
different levels of visual features. Low-level features include edges and simple
curves, while higher-level features are more specific to human faces and are com-
prised of combinations of the lower-level features.

∗We gratefully acknowledge NVIDIA Corporation for the donation of the Titan X GPU
used to support this research.

653

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Techniques from machine learning have been used extensively for language
modeling, including the generation of word embeddings in semantic feature
spaces. Bengio et al. showed early work in using neural models for learning
distributed word embeddings [2]. Mikolov et al. showed an effective method for
generating word embeddings and also discussed how embeddings can be com-
bined in semantically and syntactically interesting ways [3].

2 Visualizing Language Learning with Word Clouds

The goal of our work is to visualize what stacked autoencoders have learned when
processing natural language data. In particular, we are interested in analyzing
networks that are learning word embedding features that provide a distributed,
vector representation of coarse word semantics. These word embeddings are
learned by training a stacked autoencoder on a large corpus of text documents
with individual documents modeled using bag-of-words representations. After
training, word embeddings can be obtained by capturing hidden node activations
when the network is given a sparse vector representing a single word as input.
Since there are multiple hidden layers in typical stacked autoencoder networks,
word embeddings values from different hidden layers can be obtained that yield
different granularity levels of coarse word semantics.

Once the network is trained, then it can be examined to determine the input
vector that produces the highest output signal for a particular hidden node. A
large activation signifies an input feature that has been identified by the node
as significant. The maximum activation input vector can be produced for each
hidden node in the network by choosing input values that satisfy a certain con-
straint, typically a bound on the overall magnitude of the input vector. Erhan et
al. [4] describe one method for solving this optimization problem by determining
the maximum activation for any hidden node through the use of gradient ascent.

Once maximum activation vectors have been obtained for all the hidden nodes
in a network, we propose visualizing the detected features using word clouds. A
word cloud is widely-used language visualization technique where words from a
given text are arranged in an image such that a word’s size indicates its relative
importance to other words: larger words have more importance and the smaller
words have less importance. We use word clouds to visualize each hidden node’s
set of maximum activation words. Hidden node word clouds consist of words
from the vocabulary scaled in size relative to the magnitude of their contribution
to the node’s activation. Words corresponding with high values in the maximum
activation vector are in a larger font in the word cloud than words with lower
values. The relative size of two words is not significant across two word clouds
but only within a single word cloud.

3 Experiments

We ran two experiments using implementations written in Torch [5] and Caffe [6]
to show how our visualizations are helpful for seeing how networks have learned

654

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

from text data. The first had a very small vocabulary making it easy to see
clearly what each node has conceptually come to represent. The second used a
much larger vocabulary and dataset and only a small part of the visualization
is viewed at one time.

3.1 Four Semantic Categories

We first ran a small test with just 41 words hand-picked to fit into one of four
semantic categories: days of the week, months of the year, NBA basketball
teams, and NFL football teams. We used one GB of data from Wikipedia [7] for
our dataset of documents. We built a small stacked autoencoder network with
four nodes (one for each category) in its first hidden layer and two in its second
hidden layer to force the network to find an optimal compression of the four
categories down to two. We trained the first hidden layer for 20,000 iterations
and the second hidden layer for 15,000 iterations. We then used a world cloud
[8] library to generate visualizations for each of the network’s hidden nodes.

Fig. 1: Word clouds for all the hidden nodes in the day/month/basketball/foot-
ball network after training completes.

Figure 1 shows all the hidden node word clouds for the network. The lower
word clouds show that the four word groups are completely separated by each
of the four nodes in the first hidden layer. The higher word clouds show that
the network learned to effectively group both sports categories in one node and
both time-related categories in the second hidden layer.

3.2 Large Wordlist Experiment

Our second experiment used a wordlist of size 10,000 gathered from a complete
copy of Wikipedia. The words were the 10,000 most common words after remov-
ing stopwords. We implemented a stacked autoencoder network with 200 hidden
nodes in the first hidden layer and 50 hidden nodes in the second hidden layer.

655

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

We randomly sampled 45,574 Wikipedia articles and then trained the network
for 500,000 iterations.

Since the network is so large, visualizing it all at one time is unhelpful.
Instead, we visualize parts of the network individually by selecting a particular
node from the second hidden layer and then producing a smaller combined word
cloud along with the nodes from the first hidden layer that maximally contribute
to the second layer node.

Fig. 2: A combined word cloud showing a single second layer hidden node word
cloud on top and five of its maximally contributing first layer hidden node word
clouds beneath.

Fig. 3: A second example of a combined word cloud constructed using another
second hidden layer node along with its five maximally contributing first layer
nodes.

In Figure 2, the top word cloud is from the second hidden layer so it detects
higher-level features that combine several of the lower-level features. For ex-
ample, the left-most first layer node has words that relate to directions (north,

656

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

south) and places (united states, british, world). We can see that world, south,
north, and west are also prominent in the second layer node. The right-most first
layer node contains many number words and we see that the word three is in the
second layer node as well. With such a large wordlist and dataset, the seman-
tic separations are less distinct than in our small experiment. Figure 3 shows
another example word cloud based on a different second layer hidden node. We
can see similar relationships between the first layer node themes (family, film,
national, etc.) and the second layer node.

Using a t-SNE visualization that maps word activations to a lower-dimensional
space for easier viewing, we can see the same kind of learned semantic hierarchies
that the word cloud images show.

Fig. 4: t-SNE visualization of word first layer hidden node activations colored
according to which second layer hidden node they are most closely aligned.

Figure 4 shows a t-SNE embedding of first hidden layer activations for words
from Figure 2 (darker red points) and Figure 3 (lighter teal points). We can see
that the two groups are relatively well separated which corresponds with the two
second layer hidden nodes finding mostly distinct higher-level features to detect.

Figure 5 shows a t-SNE embedding of a single second layer hidden node. The
color of each point represents the groupings of the first hidden layer nodes within
the second layer node. One can see that even within a second layer node words
are grouped conceptually according to their input node. For example, in Figure
5 we see that this node has learned both temporal, directional, and some sort of
locational semantics but even these are split according to semantic closeness.

4 Conclusion

In this paper we have presented a technique for visualizing what stacked autoen-
coders have learned when trained on natural language data. These visualizations

657

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Fig. 5: t-SNE showing a single second layer hidden node where each color signifies
input from a unique first layer hidden node.

help show how a network has learned to represent word meanings internally and
these insights could guide future experiments, including determining effective
network structures and finding appropriate training stopping points.

References

[1] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep
belief networks for scalable unsupervised learning of hierarchical representations. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning, ICML ’09,
pages 609–616, New York, NY, USA, 2009. ACM.

[2] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language
model. In Todd K. Leen, Thomas G. Dietterich, and Volke Tresp, editors, NIPS, pages
932–938. MIT Press, 2000.

[3] Tomas Mikolov, Ilya Sutskever, Kai Chen 0010, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. CoRR,
abs/1310.4546, 2013. http://arxiv.org/abs/1310.4546.

[4] Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Visualizing higher
layer features of a deep network. Technical Report 1341, DIRO, Universite de Montreal,
2009.

[5] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like envi-
ronment for machine learning, 2011. http://torch.ch.

[6] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv:1408.5093, 2014.

[7] Matt Mahoney. Large text compression benchmark, 2011. http://mattmahoney.net/dc/

textdata.html.

[8] Andreas Mueller. Python wordcloud library, 2015. https://github.com/amueller/word_

cloud.

658

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

