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Abstract. Spectral clustering represents a successful approach to data
clustering. Despite its high performance in solving complex tasks, it is of-
ten disregarded in favor of the less accurate k-means algorithm because of
its computational inefficiency. In this article we present a fast in-memory
spectral clustering algorithm, which can handle millions of datapoints at
a desktop PC scale. The proposed technique relies on a kernel-based for-
mulation of the spectral clustering problem, also known as kernel spectral
clustering. In particular, we use a fixed-size approach based on an approx-
imation of the feature map via the Nyström method to solve the primal
optimization problem. We experimented on several small and large scale
real-world datasets to show the computational efficiency and clustering
quality of the proposed algorithm.

1 Introduction

Data clustering represents a valuable data analysis tool in modern applications
of artificial intelligence. In many domains clustering is used to gain first insights
in the data under investigation and to provide solutions to several real-life prob-
lems, from customer segmentation in marketing campaigns to fault detection in
industries within a predictive maintenance strategy.

Spectral clustering (SC) [1, 2, 3, 4] is considered among the most successful
clustering algorithms, mainly due to its ability of discovering nonlinear relation-
ships in the data. A major drawback of SC is its cubic computational complexity
and high memory cost. Several algorithms have been devised to scale SC, which
include power iteration clustering [5], spectral clustering in conjunction with
the Nyström approximation [6], incremental spectral clustering [7, 8, 9], parallel
spectral clustering [10], kernel spectral clustering [11] etc.

Kernel spectral clustering or KSC represents a kernel-based formulation of
SC and, in contrast to the other methods, allows to tackle the issues of selecting
an appropriate number of clusters and predicting the memberships of new points
using a kernel-based modeling approach. The KSC algorithm has been optimized
to handle big network data by taking advantage of their inherent sparse format
[12, 13]. In particular, a fast cosine kernel computation (based on the Python
dictionary data type) and the usage of the out-of-sample extension property
with a small representative training set have been exploited. Furthermore, in
[14] various penalty-based reduced set techniques (including the Group Lasso, L0
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and L0 + L1 penalizations) have been proposed to reduce the time complexity
of the expensive out-of-sample extension and to obtain a sparser model.

In this paper we propose an alternative strategy to cluster large-scale vector
data by means of a fixed-size procedure, which was originally proposed in [15] and
optimized in [16] only for classification and regression problems. The approach
relies on the Nyström approximation [17] of the nonlinear mapping induced by
the kernel matrix to solve the primal optimization problem. In particular, if
we denote with N the total number of datapoints, we show how the solution to
the primal optimization problem can be obtained by computing the eigenvalue
decomposition of an m×m matrix, where m ≪ N indicates the dimension of the
approximate explicit feature map. The latter is constructed by using a random
subset of size m extracted from the entire dataset.

This paper is organized as follows. In Section 2 the standard KSC algo-
rithm is briefly reviewed. Section 3 introduces the proposed approach, where
a primal KSC model instead of a dual model is derived using an approximated
explicit feature map. Section 4 reports the experimental results and finally some
conclusions are draw in Section 5.

2 Kernel Spectral Clustering

Kernel spectral clustering (KSC [11]) is a formulation of the spectral clustering
problem in the least squares support vector machines [15] learning framework.
This setting brings two main advantages, namely a rigorous tuning procedure
for the selection of a proper number of clusters and the prediction of the cluster
memberships for unseen points using an out-of-sample extension property.

Given a set of N datapoints D = {xi}
N
i=1 to be clustered in k clusters, with

xi ∈ R
d, the primal KSC optimization problem related to Ntr training data is

given by the following weighted kernel PCA formulation [11]:

min
w(l),e(l),bl

1

2

k−1
∑

l=1

w(l)T w(l) −
1

2

k−1
∑

l=1

γle
(l)TD−1e(l)

subject to e(l) = Φw(l) + bl1Ntr , l = 1, . . . , k − 1.

(1)

Equation (1) means that one wants to find some directions w(l) with minimal
norm such that the weighted variances of the projections along these directions,

i.e. e(l)
T

D−1e(l) are maximized.
The symbols have the following meaning: D−1 ∈ R

Ntr×Ntr denotes the in-
verse of the degree matrix D, which is diagonal with diagonal d = ΦΦT1Ntr , Φ
is the Ntr × dh feature matrix Φ = [ϕ(x1)

T ; . . . ;ϕ(xNtr)
T ], ϕ : Rd → R

dh indi-
cates the mapping to a high-dimensional feature space, bl are bias terms. The

e(l) = [e
(l)
1 , . . . , e

(l)
i , . . . , e

(l)
Ntr

]T indicate the clustering scores, that is the projec-

tions of the training data mapped in the feature space along the directions w(l),

and for a given point xi can be computed as e
(l)
i = w(l)Tϕ(xi) + bl. Finally,

in case of a new datapoint xtest
i , the related clustering score can be obtained as
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e
(l),test
i = w(l)T ϕ(xtest

i ) + bl, which corresponds to the out-of-sample property
mentioned earlier. Since in general the feature map Φ is unknown and can be
even infinite-dimensional (in case for instance of a Gaussian kernel), from the
KKT conditions for optimality of the Lagrangian associated with (1) one can
derive the following dual problem:

MDD−1Ωα(l) = λlα
(l) (2)

where Ω = ΦΦT indicates the kernel matrix, MD is a centering matrix and
λl =

1
γl
. The solutions α(l) allow to compute the clustering score for the i-th

training point as e
(l)
i =

∑Ntr

j=1 Ωijα
(l)
j , without explicitly knowing the expression

of the feature map. Finally, the clustering memberships can be obtained by
taking the sign of the projections and using an Error Correcting Output Codes
(ECOC) coding scheme, similarly to what can be used in case of a standard
support vector machine classifier.

3 Proposed algorithm

When the number of datapoints N is large, there are two possible solutions to
handle the clustering problem by means of the KSC algorithm: (i) select a small
number of training data Ntr ≪ N , train a KSC model by solving the dual of
(1), compute the cluster memberships for the remaining points by means of the
out-of-sample extension property; (ii) utilize a fixed-size approach by solving the
primal problem, as proposed in [15] in case of classification and regression. In
this paper we follow the second direction.

The proposed algorithm, named fixed-size kernel spectral clustering or KSC-
FS, is based on the following unconstrained formulation of the KSC primal ob-
jective:

min
ŵ(l),b̂l

1

2

k−1
∑

l=1

ŵ(l)T ŵ(l) −
1

2

k−1
∑

l=1

γl(Φ̂ŵ
(l) + b̂l1Ntr)

T D̂−1(Φ̂ŵ(l) + b̂l1Ntr)

(3)
where Φ̂ = [ϕ̂(x1)

T ; . . . ; ϕ̂(xNtr)
T ] ∈ R

Ntr×m is the approximated feature ma-
trix, D̂ ∈ R

Ntr×Ntr denotes the corresponding degree matrix, and ϕ̂ : Rd → R
m

indicates a finite dimensional approximation of the feature map ϕ(·). The m

points needed to estimate the components of ϕ̂ can be selected at random or
by means of active sampling techniques such as the Renyi entropy criterion. In
order to minimize (3) we can take the partial derivatives of the optimization

function J(ŵ(l), b̂l) w.r.t. to the primal variables:

∂J

∂ŵ(l)
= 0 → ŵ(l) = γl(Φ̂

T D̂−1Φ̂ŵ(l) + Φ̂T D̂−11Ntr b̂l)

∂J

∂b̂l
= 0 → 1T

Ntr
D̂−1Φ̂ŵ(l) = −1T

Ntr
D̂−11Ntr b̂l.

559

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



After some simple algebraic manipulations one obtains the following eigenvalue
problem to solve:

Rŵ(l) = λlŵ
(l) (4)

with λl =
1
γl
, R = Φ̂T D̂−1Φ̂−

(1T
Ntr

D̂−1Φ̂)T (1T
Ntr

D̂−1Φ̂)

1T
Ntr

D̂−11Ntr

and b̂l = −
1T
Ntr

D̂−1Φ̂

1T
Ntr

D̂−11Ntr

ŵ(l).

Notice that we now have to solve an eigenvalue problem of size m×m, which can
be done very efficiently by choosing m such that m ≤tr≪ N . Furthermore, we
can compute the diagonal of matrix D̂ as d̂ = Φ̂(Φ̂T1m), without constructing
the (potentially) large matrix Φ̂Φ̂T . Once we have solved problem (4), the
cluster memberships can be obtained by applying the k-means algorithm on the

projections ê
(l)
i = ŵ(l)T ϕ̂(xi)+ b̂l for training data and ê

(l),test
i = ŵ(l)T ϕ̂(xtest

i )+

b̂l in case of test points.
In order to compute the approximated feature map, one can apply the

Nyström method to solve numerically the Fredholm integral equation. In partic-
ular, the i-th component of the m dimensional feature map ϕ̂ for a given point
x can be calculated as follows [18]:

ϕ̂i(x) =
1

β
(s)
i

m
∑

j=1

ujiK(xj ,x) (5)

where β
(s)
i and ui are the eigenvalues and eigenvectors of the m × m kernel

matrix Ω̂ = Φ̂Φ̂T , with K(xi,xj) = Ω̂ij .
A Matlab implementation of the algorithm can be freely downloaded at:

http://www.esat.kuleuven.be/stadius/ADB/langone/softwareKSCFSlab.php

4 Experimental Results

In this Section the results of the simulations performed on several real-world
datasets (mostly) from the UCI machine learning repository are reported. In
all the experiments we have used the following settings1: m = 100, Ntr =

0.80N , Ntest = 0.20N , K(xi,xj) = exp(−
||xi−xj||

2
2

σ2 ) (Gaussian kernel). The m

datapoints are selected at random2 and each simulation is repeated 30 times. For
simplicity, the number of clusters k has been set equal to the number of classes,
and a grid search procedure using the balanced angular fit (BAF [12]) as quality
criterion has been used to select an optimal σ. The cluster quality is assessed
using an internal quality metric, namely the Davies-Bouldin [19] criterion, and
an external quality metric such as the the adjusted rand index (ARI [20]). In
the latter case we follow the cluster assumption [21], according to which if points
are in the same cluster they are likely to be of the same class.

1We have also experimented with m = 500, m = 1000 and m = 5000, but we found out
that m = 100 represents a good trade-off between cluster quality and computation time.

2Also the usage of the Renyi entropy criterion has been investigated. In general we have
observed that, compared to random sampling, the Renyi entropy sampling method leads to
less variable outcomes (among the different runs) and a similar mean cluster quality.
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Table 1 reports the performance of the proposed algorithm and the k-means
approach in terms of execution time, ARI and DB index. In general, the KSC-
FS approach performs better in terms of ARI and worse according to the DB
index. Regarding the runtime, it is competitive in most of the datasets and
outperforms k-means in case of the largest databases (i.e. Susy and Higgs).

Dataset N d
KSC-FS K-means

ARI DB Time (s) ARI DB Time (s)
Iris 150 4 0.64 0.85 0.012 0.57 0.83 0.005
Ecoli 336 8 0.50 1.57 0.023 0.50 1.17 0.010

Dermatology 366 33 0.83 1.87 0.017 0.69 1.91 0.013
Vowel 528 10 0.12 1.67 0.053 0.09 1.60 0.023
Libras 360 91 0.32 1.46 0.030 0.29 1.32 0.046

Pen Digits 10 992 16 0.61 1.63 0.064 0.57 1.43 0.161
Opt Digits 5 620 64 0.52 3.12 0.085 0.52 1.93 0.374

S1 5 000 2 0.96 0.40 0.046 0.89 0.49 0.019
S4 5 000 2 0.66 0.67 0.066 0.64 0.68 0.066

Spambase 4 601 57 0.38 3.87 0.020 0.22 1.83 0.100
Magic 19 020 11 0.04 3.28 0.093 0.006 1.43 0.078
Shuttle 58 000 9 0.29 2.00 0.368 0.35 0.75 0.212
Skin 245 057 3 0.03 0.67 0.415 -0.03 0.69 0.280
RCV1 20 242 1 960 0.08 2.03 1.139 0.008 0.67 1.140

Covertype 581 012 54 0.07 3.85 4.550 0.05 1.89 4.291
GalaxyZoo [22] 667 944 9 0.25 1.69 3.047 0.27 1.12 2.558

Susy 5 000 000 18 0.12 2.17 18.96 0.11 2.08 59.54
Higgs 11 000 000 28 0.008 3.34 27.11 0.006 2.68 129.7

Table 1: Clustering results on real-world datasets. Comparison of the
proposed KSC-FS approach against the k-means algorithm. In case of the KSC-
FS method, the runtime comprises both training and test stages.

5 Conclusions

In this paper we have presented an efficient and accurate in-memory cluster-
ing algorithm. The proposed technique uses a fixed-size approach based on an
approximation of the feature map (via the Nyström method) to solve the pri-
mal optimization problem characterizing a kernel spectral clustering model. A
number of experiments performed on well-known real-world datasets confirm the
usefulness of the proposed algorithm.
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