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Abstract. The advent of affordable drones capable of taking high resolu-
tion images of agricultural fields creates new challenges and opportunities
in aerial scene understanding. This paper tackles the problem of recog-
nizing crop types from aerial imagery and proposes a new hybrid neural
network architecture which combines histograms and convolutional units.
We evaluate the performance of the hybrid model on a 23-class classifi-
cation task and compare it to convolutional and histogram-based models.
The result is an improvement of the classification performance.

1 Introduction

In the past few years, the UAV1 industry has grown from a niche market to main-
stream availability, lowering the cost of aerial imagery acquisition and opening
the way to many interesting applications. In agriculture, those new data sources
can be used to help farmers and decision makers better understand and manage
crops.

An automatic crop classification system leveraging UAV imagery would be
useful for a number of studies. For example, in erosion risk assessment, an
overview of the whole landscape upon several growers is necessary because the
flow of water depends on soil coverage and annual changes (crop rotation). Other
domains such as watershed management and crop yield estimation could benefit
from such a classification too.

There are a number of previous works that use UAV imagery in an agri-
cultural context. In [1], the authors used a neural network to classify different
crops using remote sensed images to help administrations evaluate and target

1Unmanned Aerial Vehicle, or Drone
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their agricultural subsidies programs. In [2], the authors designed a procedure
to quantify the ground coverage of weed from UAV imagery to better target
herbicides. In [3], the authors evaluate different vegetation indices to quan-
tify vegetation coverage from UAV imagery2. Moreover, [4] and [5] explore the
problem of segmenting fields from aerial imagery.

In the field of texture classification, numerous approaches use hand-picked
filters to extract features which are then used by a classifier. In [6], the au-
thor proposed an improved Local Binary Patterns descriptor and in [7], a new
histogram-based, rotation invariant approach is explored. In [8], the author
explored the use of random projection to extract texture descriptors.

In this paper, we explore the use of a hybrid deep neural network which
combines convolutional layers [9] with per-window histograms to increase crop
classification performance. We show that the hybrid system performs better
than either model individually and that the resulting classification map is of
high quality.

2 Dataset

The dataset we use in this paper was built from aerial images of experimental
farm fields issued from a series of experiments conducted by the Swiss Confed-
eration’s Agroscope research center. The particular image we used is shown in
Figure 1 and covers a small zone (∼ 100× 60 m) in which different plant species
were sown to perform agronomic research.

Fig. 1: The aerial image used
in our experiments. Some
zoomed regions are shown to
highlight the different textures
that appear depending on the
crops.

Figure 2 shows the spatial distribution of the 22 different crops (23 if we
count bare soil) that can be found in the area under study. The RGB image
has a size of 2425× 2175 pixels with a ground resolution of 5 cm. The crops are
divided in small parcels of about 6 × 8 m, with 3 repetitions for each crop.

The dataset was split into a training part and a test part following two
different policies. Figure 2 shows the distribution of the resulting folds in both

2The UAV used in this work is a Swinglet CAM from SenseFly. The camera is a compact
Canon IXUS 220 HS with a CMOS de 12.1 MP sensor and a 24 mm equivalent focal length.
Each image has a resolution of 3000 x 4000 pixels in RGB. The final mosaic is constituted of
100 assembled images.

516

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



Fig. 2: Labels of the different crops present in the area under study. The black
boxes show the test fold for experiment 0 and the gray area the test fold for
experiment 1.

cases. The parcels in the black rectangles were used to build the test fold of
experiment 0 (exp. 0) whereas experiment 1 (exp. 1) was built from the parcels
in the light gray area. For some crops, the parcel in the lower-right part of the
image is different from the parcel in the upper-left part, making experiment 1
more difficult.

3 Models

In order to infer the class of a pixel, we provide the models with the information
of a window of size 21 × 21 of the pixel’s neighbourhood3.

The image shown in Figure 1 suggests that both color and texture seem
to be important characteristics to discriminate between different crop classes.
Hence, we used a deep neural network which consists of a convolutional side
(CNN) which uses the raw pixel values and a dense side which uses RGB his-
tograms (HistNN). The output of both networks was merged by a final layer
which predicts the class of each pixel.

The input image is centered so that all channels are in the [−0.5, 0.5] interval.
The HistNN consists of two 32 units dense layers and is fed with three 20-bin
histograms (one per channel). The CNN consists of two convolutional layers:
the first with 48 11 × 11 filters and the second with 48 3 × 3 filters. Each one is
followed by a 2 × 2 max-pooling layer.

The outputs of the CNN and the HistNN are merged into a dense layer of
size 128 which is then used to predict a class probability amongst the 23 target
classes using a softmax layer. All inner layers in the network have a rectified
linear activation function.

To train our networks, we used the Adam [10] stochastic optimization im-
plementation included in the Keras [11] deep learning library4. We kept the
recommended parameters for the learning rate α (α = 0.001), β1 (β1 = 0.9) and
β2 (β2 = 0.999), and we used the multiclass log loss 5 objective function. We ran

321 × 21 pixels represents a square of 1 meter side on the ground.
4We used a NVIDIA Tesla M2075 to train our models.
5Also known as categorical cross-entropy
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the training for 60 epochs with a batch size of 256 samples and with additional
dropout layers to reduce over-fitting. We observed that those settings led to
good convergence. For the training phase, each window was rotated by 0◦, 90◦,
180◦ and 270◦ to force the learnt filters to be rotation invariant, resulting in a
total of 160 000 examples.

We first trained the CNN and HistNN models separately. Then, we added
the merging layer to obtain the Merged model which was then fine-tuned. Al-
though we did not explicitly forbid updates to the CNN and HistNN layers
during fine-tuning, we observed that fine-tuning mostly affected the merging
layer.

4 Results

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
F1  score

cnn_exp0

histnn_exp0

merged_exp0

cnn_exp1

histnn_exp1

merged_exp1

Per-model classification performance for 10 train repetitions

Fig. 3: F1-score for different models in our two settings

Figure 3 shows the classification performance for the three models we tested.
We see that experiment 1 is harder, due to the folding structure. In both cases,
our hybrid CNN-HistNN network performs better than either model alone. In
the resulting classification maps shown in Figure 4, one can see that HistNN
makes coarser predictions while CNN looks noisier. Merging the two provides a
homogeneous classification map inside the parcels. Although it exhibits better
performance, one disadvantage of the Merged network is the training time. For
one epoch, the CNN takes 53 seconds, the Merged network 57 seconds but the
HistNN only 6 seconds.

Figure 5 shows the test F1-score for each class and each model, averaged
over 10 runs. For most classes, the HistNN performs as well or better than the
CNN. For some classes such as Lin and Niger, the CNN performs better than
the HistNN. In Figure 6, we compare an example window of the Lin class with
a window of the Simplex class. We can see that the Lin window is wrongly
classified as Simplex by the HistNN. Indeed, the histograms are very similar
and therefore, it is not possible to distinguish those two classes based solely on
color. For each class, we plot the output of the first convolution layer of the
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CNN HistNN Merged Hist/CNN

Fig. 4: Classification maps for experiment 0
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Fig. 5: Test F1-scores for each model/experiment.

CNN applied to the window. We can see that for the Lin, the CNN is able
to extract the diagonal structure of the image (highlighted by red squares in
Figure 6). Similar observations can be made on other examples of the Lin class
and this strengthen our intuition that both texture and color are important for
classifying the crops in our dataset.

0.0 0.25 0.5 0.75 1.0
0.00

0.11

0.23

0.34

0.45

0.0

0.8

Ground truth CNN HistNN MergedNN

Prediction Lin Lin Simplex Lin

(a) Lin
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Fig. 6: Comparison of models on Lin and Simplex. Each plot shows the input
RGB window, the corresponding histogram, the output of the first convolutional
layer of the CNN and the predicted labels for each model.
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5 Conclusion

In this paper, we studied the classification of crops based on UAV aerial imagery.
We proposed a hybrid CNN - HistNN deep neural network that is capable of
using both color distribution and texture patterns to successfully classify a wide
variety of crops. Our model exhibited good performance under two different
folding policies, which shows the robustness of the approach. Further work
should explore many parameters of the model, such as the number of filters
in the CNN and the number of layers. It would be interesting to see if we can
transfer our model to a new area with different fields, by only fine-tuning the last
layer. Another interesting question would be to evaluate the ability of our model
to classify the growth stage, which could be interesting for yield prediction.
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