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Abstract. Support-based clustering has recently drawn plenty of atten-
tion because of its applications in solving the difficult and diverse clus-
tering or outlier detection problem. Support-based clustering method un-
dergoes two phases: finding the domain of novelty and doing clustering
assignment. To find the domain of novelty, the training time given by the
current solvers is typically quadratic in the training size. It precludes the
usage of support-based clustering method for the large-scale datasets. In
this paper, we propose applying Stochastic Gradient Descent framework
to the first phase of support-based clustering for finding the domain of
novelty in form of a half-space and a new strategy to do the clustering
assignment. We validate our proposed method on the well-known datasets
for clustering to show that the proposed method offers a comparable clus-
tering quality to Support Vector Clustering while being faster than this
method.

1 Introduction

Cluster analysis is a fundamental problem in pattern recognition where objects
are categorized into groups or clusters based on pairwise similarity between those
objects such that two criteria, homogeneity and separation, are gained [13].
Two challenges in the task of cluster analysis are 1) to deal with complicated
data with nested or hierarchy structures inside; and 2) automatically detect
the number of clusters. Recently, support-based clustering for example Support
Vector Clustering (SVC) [1] has drawn a significant research concern because of
its applications in solving the difficult and diverse clustering or outlier detection
problem [1, 14, 10, 3, 6, 8, 7]. Support-based clustering methods have two main
advantages comparing with other clustering methods: 1) ability to generate
the clustering boundaries with arbitrary shapes and automatically discover the
number of clusters; and 2) capability to handle well the outliers.

Support-based clustering methods always undergo two phases. In the first
phase, the domain of novelty, e.g., optimal hypersphere [1] or hyperplane [11],
is found in the feature space. The domain of novelty when mapped back to the
input space will become a set of contours tightly enclosing data which can be
interpreted as cluster boundaries. However, this set of contours does not specify
how to assign a data sample to its cluster. In addition, the computational
complexity of the current solvers [5, 4] to find out the domain of novelty is often
quadratic. Such a computational complexity impedes the usage of support-based
clustering methods for the real-world datasets. In the second phase, namely
clustering assignment, based on the geometry information carried in the resultant
set of contours harvested from the first phase, data samples are appointed to their
clusters. Several works have been proposed for improving cluster assignment
procedure [14, 10, 3, 8, 6].
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Recently, stochastic gradient descent (SGD) frameworks [12] have emerged
as building blocks to develop the learning methods for efficiently handling the
large-scale dataset. The main advantages of SGD-based algorithm consist of the
following: 1) it is very fast; 2) it has ability to run in online mode; and 3) it does
not require to load the entire dataset to the main memory in training. In this
paper, we conjoin the advantages of SGD with support-based clustering. Con-
cretely, we propose to use the optimal hyperplane as the domain of novelty. The
margin, i.e., the distance from the origin to the optimal hyperplane, is maximized
to make the contours enclosing the data as tightly as possible. We subsequently
apply the SGD framework proposed in [12] to the first phase of support-based
clustering for achieving the domain of novelty. Finally, we propose a new strat-
egy for clustering assignment where each data sample in the extended decision
boundary has its own trajectory to converge to an equilibrium point and cluster-
ing assignment is then reduced to the same task for those equilibrium points. Our
clustering assignment strategy distinguishes from the existing works of [8, 9, 6]
in the way to find the trajectory with a start and the initial set of data samples
that need to do a trajectory for finding the corresponding equilibrium point.
The experiments established on the real-world datasets show that our proposed
method produces the comparable clustering quality with other support-based
clustering methods while simultaneously achieving the computational speedup.

2 Stochastic Gradient Descent Large Margin One-class Sup-
port Vector Machine

2.1 Large Margin One-class Support Vector Machine

Given the dataset D = {z1,z2,...,2n}, to define the domain of novelty, we
construct an optimal hyperplane that can separate the data samples and the
origin such that the margin, i.e., the distance from the origin to the hyperplane,
is maximized. The optimization problem is formulated as

1333((|P|/\|WH2)
s.t.:y; (WT(b(.I‘i) —p) >0,i=1,...,N;w0—p=—p<0

where ¢ is a transformation from the input space to the feature space and
w'¢(z) — p =0 is equation of the hyperplane.

It occurs that the margin is invariant if we scale (w, p) by a factor k. Hence
without loss of generality, we can assume that p = 1. Using the same deriva-
tion as in standard Support Vector Machine (SVM) [2], we yield the following
optimization problem in primal.

: O
min <J(w) 25 Iwl* + Zmax{o, 1- w%(m)}) (1)

2.2 SGD-based Solution In Primal
To efficiently solve the optimization in Eq. (1), we use stochastic gradient descent
method. At t*" round, we sample the data point x,, from the dataset D.
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Let us define g, (w) £ 1 |w||* + Cmax {0,1—wT"¢(z,,)}. It is obvious that

g:(w) is 1 — strongly convex w.r.t. f(w) = 1 |[wl||* over the feature space and

f(w) is 1-strongly convex w.r.t. the norm ||.||, over the feature space as well.
The sub-gradient is A\; = wy — Cl[ww(mnt)d]gb (n,) € Ogi (W), where 14 (.)

is the indicator function. Therefore, the update rule is

Wit = V5 (TF) =130 = (1= ) Wt Shgugen o on) @)

Algorithm 1 is proposed to find the optimal hyperplane which defines the
domain of novelty. At each round, one data sample is uniformly sampled from
the training set and the update rule in Eq. (2) is applied to determine the next
hyperplane, i.e., w;11. Finally, the last hyperplane, i.e., wpy; is outputted as
the optimal hyperplane. According to the theory displayed in the next section,
we can randomly output any intermediate hyperplane and the approximately
accurate solution is still warranted in a long-term training. Nonetheless, in
Algorithm 1, we make use of the last hyperplane as output to exploit as much
as possible the information accumulated through the iterations. It is worthwhile
to note that in Algorithm 1, we store w; as w, = >, a; ¢ ().
Algorithm 1 Algorithm for solving SGD-LMSVC in primal
Wi = 0
fort=1to T do

Sampling n; from [N] ={1,2,...,N}.

Wit1 = (]- - %) wi + %1[WI¢($W)<1]¢ (:Cm)
endfor
Output: wp,

I"t

2.3 Convergent Rate Guarantee

In this section, we show the convergent rate guarantee of Algorithm 1. We use
the framework for regularized loss minimization proposed in [12]. Our main
proof is based on Theorem 1 in [12], which is for completeness we restate here.

Theorem 1. Let f be 1-strongly convex function w.r.t. ||.| over S. Assume that
for all t, g; is o-strongly conver w.r.t. f. Additionally, let L be a scalar such
that % ||)\t||f < L for allt. Then, for all u € S the following bound holds for all

T T
T>1, 3090 (We) = 3oy 90 (uw) < % (14 log (T)).
Before investigating the convergent rate of Algorithm 1, we assume that data
are bounded in the feature space, i.e., ||¢(x)|| < R for all x € X'. The convergent
rate (O (%)) of Algorithm 1 is guaranteed through the following theorem.

Theorem 2. Let w; be defined as in Algorithm 1. For any u € S, the following
bounds hold for all T > 1, S21_, g: (i) — 31—, g (u) < 2R2C? (1 + log (T)).

Theorem 3. Assume that ny,na,...,ny are uniformly selected from [N] and r
is uniformly selected from [T]. Given 6 € (0;1), with the probability greater than
1— 4, the following holds:

2R2C% (1 +log (T))

J (wy) < J(w*) + 5T
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3 Clustering Assignment

After solving the optimization problem, we yield the decision function f (z) =
Zfil o; K (x;, ) — 1. To find the equilibrium points, we need to solve the equa-
tion V f (x) = 0. To this end, we use the fixed point technique and assume that
Gaussian kernel is used, i.e., K (z,2’) = e=lz=2'I* | We then have

N N _ _ 12

! N oelle—zilltg,

SV @) =Y ai e —w)e el =0z = Lz i€ - i p(a)
i=1 iy aie el

To find an equilibrium point, we start with the initial point z(®) € R? and
iterate 201 = P (2(9)). By fixed point theorem, the sequence ("), which

can be considered as a trajectory with start 2(?), converges to the point 1’&0)

satisfying P(xfko)) = I&o) or Vf (ngo)) =0, ie., $>(ko) is an equilibrium point.

Let us denote B = {z; : 1 <i< N A |f(x;)] < €}, namely the extended
boundary for a tolerance € > 0. It follows that the set B, forms a strip enclosing
the decision boundary f(x) = 0. Algorithm 2 is proposed to do clustering
assignment. In Algorithm 2, the task of clustering assignment is reduced to
itself for M equilibrium point. To fulfill cluster assignment for M equilibrium
points, we run m = 20 sample point test as proposed in [1].

Algorithm 2 Clustering assignment procedure.
E =0.
foreach z(© in B. do

Find the equilibrium point a:io).

if(xSP) ¢ E) E=EU {xﬂf’)}

endfor
//Assume that E = {e1,ea,...,en}
Do m sample point test with for F to find cluster indices for e, ez, ..., en.

Each point z(®) € B, is assigned to the cluster of its corresponding equilibrium
point x&o) € FE.

Each point € D\ B, is assigned to the cluster of its nearest neighbor in B..

4 Experiments

To explicitly prove the performance of the proposed algorithm, we establish
experiments on the real datasets. Clustering problem is basically unsupervised
learning and there is not therefore a perfect measure to compare two given
clustering algorithms. In this paper, we examine four typical clustering validity
indices (CVI) including compactness, purity, rand index, and Davies-Bouldin
index (DB index). The good clustering algorithm should produce the solution
which has high purity, rand index, DB index and low compactness.

We perform experiment on 11 well-known datasets for clustering. These
datasets are fully labeled and the CVIs like purity and rand index can be com-
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pletely estimated. We compare the proposed method SGD-LMSVC with Sup-
port Vector Clustering (SVC) [1]. For finding the domain of novelty, SVC con-
structs an optimal hypersphere in the feature space which has a minimal volume
and encloses all data. We use the well-known LIBSVM solver [4] to implement
the first phase of SVC, i.e., finding the domain of novelty. The second phase
of SGD-LMSVC and SVC, i.e., clustering assignment, is the same as described
in Subsection 3 where € was set to 0.01. All codes are implemented in C'# and
experimented on the computer with CPU 2.6GHz dual-core and 4GB RAM.

RBF kernel given by K (z,z') = e le==' I is employed. The width of kernel
~ is searched on the grid {2_5, 273 ..., 23, 25}. The trade-off parameter C' is
searched on the same grid. Actually, to make consistent, we set the trade-off
parameter as C' X N in the proposed method.

Datasets Time Purity Rand Index Compactness DB Index
SVC | SGD || SVC | SGD || SVC | SGD || SVC | SGD SVC | SGD

Aggregation 31.46 | 8.98 1.00 | 1.00 1.00 | 1.00 || 0.29 | 0.29 0.68 | 0.67
Breast Cancer 19.99 2.42 0.98 | 0.99 0.82 | 0.85 1.26 0.68 1.58 1.38
Compound 6.85 0.07 0.66 | 0.62 0.92 | 0.88 0.50 0.21 2.45 0.86
D31 1.83 0.42 0.94 0.99 0.88 0.81 1.41 0.26 2.33 1.35
Flame 2.33 0.19 0.86 | 0.87 0.75 | 0.76 0.58 0.44 1.30 | 0.65
Glass 1.05 0.02 0.50 | 0.71 0.77 | 0.91 0.72 0.68 0.53 | 0.56
Iris 5.82 0.55 1.00 1.00 0.97 0.96 0.98 0.25 1.95 1.17
Jain 0.03 0.53 0.37 | 0.46 0.70 | 0.71 0.96 0.36 1.23 1.08
Pathbased 4.16 0.13 0.60 | 0.50 0.81 | 0.94 0.18 0.30 0.36 | 0.73
R15 1.61 0.23 0.88 0.90 0.74 0.71 0.61 0.13 2.96 1.42
Spiral 467.89 | 0.66 0.09 | 0.33 0.15 | 0.94 2.00 0.17 1.41 0.98

Table 1: Total times (in second) on the experimental datasets of SGD-LMSVC

(SGD) and SVC.
We report the total time (cf. Table 1) including the training time to find

the domain of novelty and the clustering assignment time for each competitive
algorithms. Determining the number of iterations in Algorithm 1 is really a
challenge. To resolve it, we use the stopping criterion ||w¢11 — wy|| < 6 = 0.01,
i.e., the next hyperplane does only a slight change.

For each CVI, we boldface the method that yields a better outcome, i.e.,
higher value for purity, rand index, and DB index and lower value for compact-
ness. As shown in Table 1, our proposed SGD-LMSVC is comparable with SVC
on all considering CVIs. Especially, our proposed SGD-LMSVC surpasses SVC
on the compactness, purity, and rand index. Regarding the amount of time
taken for clustering, as our expectation, SGD-LMSVC is much faster than SVC.
The computational speedup is even around 707 times for the Spiral dataset.

5 Conclusion

In this paper, we have proposed a fast support-based clustering method, which
conjoins the advantages of SGD-based method and kernel-based method. Fur-
thermore, we have also proposed a new strategy for clustering assignment. We
validate our proposed method on 11 well-known datasets for clustering. The
experiment has shown that our proposed method has achieved the comparable
clustering quality comparing with the baseline while being much faster.
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