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Abstract. In this paper, we propose a novel method for unsupervised
feature selection, which utilizes spectral clustering and discriminant analy-
sis to learn the cluster labels of data. During the learning of cluster labels,
feature selection is performed simultaneously. By imposing row sparsity
on the transformation matrix, the proposed method optimizes for select-
ing the most discriminative features which better capture both the global
and local structure of data. We develop an iterative algorithm to effec-
tively solve the optimization problem in our method. Experimental results
on different real-world data demonstrate the effectiveness of the proposed
method.

1 Introduction

Feature selection is an efficient technique for data dimension reduction in ma-
chine learning and data mining, which brings the immediate effects for appli-
cations including: speeding up the algorithms, reducing the risk of over fitting,
and improving the accuracy of the predictive results [1].

Unsupervised feature selection has attracted increasing attention in recent
years. Without cluster labels, unsupervised feature selection extracts features
that effectively maintain the important underlying structure of data, such as
the global structure and the local structure. The Maximum Variance method
and the global pairwise similarity method [2] select features by preserving the
global structure of data. While, the Laplacian Score (i.e., LS) method [3] and
the Multi-Cluster Feature Selection (i.e., MCFS) method [4] exploit the local
data structure to conduct feature selection.

Since unsupervised feature selection lacks the label information, many meth-
ods select features by learning the cluster labels. Spectral clustering is an efficient
method which aims to find the optimal partitions among different clusters. Li
et al. [5] performed spectral clustering to learn the cluster labels, meanwhile,
feature selection was performed to select a better feature subset. Instead of spec-
tral clustering, Yang et al. [6] utilized discriminant analysis to joint learning of
the cluster labels with unsupervised feature selection. Discriminant analysis is
important to feature selection, which aims to select the discriminative features.

In this paper, we utilize both spectral clustering and discriminant analysis
to learn the cluster labels of data, during which feature selection is performed
simultaneously. The global structure of data is captured by the discriminant
analysis, while the local geometric structure is revealed by spectral clustering.
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Our proposed method is referred to as SDFS. SDFS optimizes for selecting the
most discriminative features which can better capture both the global and local
data structure. We develop an iterative algorithm to effectively solve the opti-
mization problem. Many experimental results are provided for demonstration.

2 The Proposed Method

In this paper, we use x1 , ..., xn to denote the n unlabeled data samples, xi ∈ R
m

and X = [x1, ..., xn] ∈ R
m×n is the data matrix. Let {f1, ..., fm} be the set of

features where m is the number of features. Feature selection is to select d
features form f1, ..., fm to represent the original data, where d < m. We use I
to denote the identity matrix, and let 1n ∈ R

n denote a column vector with all
of its elements being 1. The centering matrix is Hn = I − 1

n1n1
T
n .

Consider that x1 , ..., xn are sampled from c clusters. Let Y = [y1, ..., yn]
T ∈

{0, 1}n×c denote the label matrix, where yi ∈ {0, 1}c×1 is the label vector of xi.
The jth element of yi is 1 if xi is in the jth cluster, and 0 otherwise. The scaled
cluster indicator matrix F is defined as F = [F1, ..., Fn]

T = Y (Y TY )−1/2.

2.1 Local structure learning

The proposed SDFS method utilizes spectral clustering to learn the scaled clus-
ter indicator matrix F , which aims to preserve the local data structure. The
objective function of spectral clustering can be formulated as

min
F

Tr(FTLF ), s.t. F = Y (Y TY )−1/2, (1)

where Tr(·) is the trace operator and L is a Laplacian matrix constructed based
on local data structure using different methods. In this paper, we utilize the
k-nearest neighbor graph to construct the normalized Laplacian matrix L. The
similarity matrix S with the pairwise similarity Sij as its entries is calculated

as Sij =

{

exp(− ‖xi−xj‖2

2σ2 ), xi and xj are k nearest neighbors,
0, otherwise,

where σ is

the bandwidth parameter. Let D denote a n × n diagonal matrix with Dii =
∑n

j=1 Sij on the diagonal. The normalized Laplacian matrix L is defined as

L = I −D−1/2SD−1/2.

2.2 Global structure learning

In SDFS, linear discriminant analysis is utilized in the learning process to capture
the global data structure. Following [7], the total scatter matrix is defined as
St =

∑n
i=1(xi − μ)(xi − μ)T = X̃X̃T and the between-cluster scatter matrix is

defined as Sb =
∑c

i=1 ni(μi − μ)(μi − μ)T = X̃FFT X̃T , where μ is the mean of
all data, μi is the mean of data in the ith cluster, ni is the number of data in
the ith cluster, and X̃ = XHn is the data matrix after being centered.

The linear discriminant analysis is to find a linear transformationW ∈ R
m×q

(q < m) that projects X from m-dimensional space to q-dimensional space. In
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the lower dimensional space, the within-cluster distance is minimized while the
between-cluster distance is maximized as [7]

max
W

Tr((WTStW )−1WTSbW ). (2)

Since (2) has a trivial solution of all zeros when performing sparsity constraint
on W for feature selection, Tao et al. [8] presented the nontrivial solution of (2)
by setting WTStW = I for supervised feature selection, which also inherits the
merit of selecting the most discriminative features. In the proposed method, we
consider the nontrivial solution of (2) as [8]. Furthermore, we also consider to
preserve the local structure which is not considered in [8].

2.3 The Objective Function

By incorporating spectral clustering, discriminant analysis and l2,1-norm regu-
larization into a framework, the proposed SDFS method is formulated as

min
W,F

Tr(FTLF ) + α(−Tr(W TSbW ) + β‖W‖2,1),
s.t.FFT = Ic, F ≥ 0,WTStW = I,

(3)

where α and β are two balanced parameters. We relax the condition of F =
Y (Y TY )−1/2 to FFT = Ic as in [6]. Since the nonnegative constraint of F can
help to relieve the deviation from the true solution [5], we constrain F to be
nonnegative. To avoid the trivial solution [8], we constrain the transformation
matrix W to be uncorrelated with respect to St , i.e., W

TStW = I.
Note that in (3) the term ‖W‖2,1 is introduced to ensure that W is sparse

in rows. Let W = [w1, ..., wn]
T ∈ R

m×q, where wi is the i
th row of W . Since wi

corresponds to the weight of feature fi, the sparsity constraint on rows makes
W suitable for feature selection. After the optimal transformation matrix W is
obtained, each feature fi is ranked according to ‖wi‖2 in descending order and
the top d features are selected.

2.4 Optimization

We propose an iterative algorithm, which divides the optimization problem into
two steps: learning W while fixing F , and learning F while fixing W .

Since St = X̃X̃T , Sb = X̃FFT X̃T and FFT = Ic, we rewrite the objective
function of SDFS as follows.

min
W,F

Tr(FTLF ) + α(−Tr(W T X̃FFT X̃TW ) + β‖W‖2,1) + γ

2
‖FTF − Ic‖2F ,

s.t.F ≥ 0,WT X̃X̃TW = I,

(4)

where γ > 0 is a parameter to ensure the orthogonality.
When F is fixed, we need to solve the following problem.

min
W
−Tr(WT X̃FFT X̃TW ) + β‖W‖2,1, s.t. WT X̃X̃TW = I. (5)
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Since
∂‖W‖2,1

∂W = 2UW where U ∈ R
m×m is a diagonal matrix with the ith

diagonal element as Uii = 1
2‖wi‖2

, by constructing an auxiliary function, we

rewrite (5) as

min
W

Tr(WT (−X̃FFT X̃T + βU)W ), s.t. WT X̃X̃TW = I. (6)

The solution of (6) can be obtained by solving the following generalized eigen-
problem:

(−X̃FFT X̃T + βU)w̃ = λX̃X̃T w̃. (7)

The matrix W ∈ R
m×q, containing the eigenvectors corresponding to the q

smallest eigenvalues as the column vectors, is the solution of (6). Then, we
normalize W such that (WT X̃X̃TW )ii = 1, i = 1, ..., q.

Next, when W is fixed, we need to solve the following problem.

min
F

Tr(FTLF )− αTr(WT X̃FFT X̃TW ) +
γ

2
‖FTF − Ic‖2F , s.t.F ≥ 0. (8)

Since Tr(WT X̃FFT X̃TW ) = Tr(FT X̃TWWT X̃F ), letM = L−αX̃TWWT X̃,
(8) can be rewritten as

min
F

Tr(FTMF ) +
γ

2
‖FTF − Ic‖2F , s.t. s.t.F ≥ 0. (9)

Following [5], we update F by multiplicative rules, as

Fij ← Fij
(γF )ij

(MF + γFFTF )ij
. (10)

Then, we normalize F such that (FTF )ii = 1, i = 1, ..., n.
In summary, we solve the optimization problem in (4) in an alternative way.

We first construct the k-nearest neighbor graph and calculate L. We initialize
F ∈ R

n×c and set U ∈ R
m×m as an identity matrix. W is calculated according

to the generalized eigenproblem in (7). Then, F is updated according to (10) and
U is updated by setting Uii =

1
2‖wi‖2

. After that, W is updated again according

to (7). This updating process is continued until (4) is convergent. To optimize
the objective function of SDFS, the most time consuming operation is to solve
the generalized eigenproblem in (7). The time complexity of the operation is
O(m3) approximately. Empirical results show that the convergence is fast and
only several iterations (less than 10 iterations in the presented datasets) are
needed to converge. Thus, the proposed method scales well in practice.

3 Experiments

In our experiments, we use a diversity of six public datasets to compare the
performance of different unsupervised feature selection methods. Their data
properties are summarized in Table 1. We compare the proposed method with
several well-known unsupervised feature selection methods, including LS [3],
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MCFS [4], UDFS [6], and NDFS [5]. We also compare these feature selection
methods with the baseline method, which uses all the features for clustering.
The number of nearest neighbors is set as k = 5, which is similar to [3, 4, 6, 5].
The parameters is tuned from {10−6, 10−4, 102, 1, 102, 104, 106}. The number of
selected features is ranged from {50, 100, 150, 200, 250, 300}. We report the best
result of all the methods by using different parameters. We first perform each
feature selection method to select features and then perform K-means based on
the selected features. Two widely used evaluation metrics, i.e., Accuracy (ACC)
and Normalized Mutual Information (NMI) [9], are applied to evaluate the clus-
tering results. We repeat the clustering 20 times with random initializations and
report the average results.

Dataset # of samples # of Features # of Clusters
UMIST [10] 575 644 20
JAFFE[11] 213 676 10
BA[12] 1404 320 36

MNIST[13] 2000 784 10
Isolet1[13] 1560 617 26
COIL20[13] 1440 1024 20

Table 1: Properties of Datasets.

We summarize the clustering results on the six datasets in Table 2 and Table
3. Most of the unsupervised feature selection methods performs better than the
baseline method. The LS method can not improve the accuracy of clustering
results for many datasets. On most of the datasets, NDFS, UDFS and SDFS
perform better than MCFS. Both NDFS and SDFS apply spectral clustering for
feature selection, which results in more accurate clustering than other methods
on most of the data sets. The proposed SDFS method obtains best performance
on all the six datasets. That is because SDFS utilizes spectral clustering and dis-
criminant analysis simultaneously, which is able to select the most discriminative
features to better capture both the global and local structure of data.

4 Conclusion

In this paper, we propose a novel unsupervised feature selection method, which
incorporates spectral clustering, discriminant analysis and l2,1- norm regular-
ization into a joint framework. We derive an efficient algorithm to solve the
optimization problem of the proposed method. Experiments on various types of
datasets demonstrate the advantages of the proposed method.
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Dataset UMIST JAFFE BA MNIST Isolet1 COIL20
Baseline 64.1±5.2 73.5±5.8 56.0±2.0 47.7±2.5 71.3±3.0 73.0±4.3
LS 60.2±4.8 72.8±6.2 56.3±1.8 48.2±2.8 61.7±2.8 65.9±4.4
MCFS 64.8±4.6 76.2±4.4 56.5±1.8 50.8± 2.3 70.5±3.2 68.2±4.5
UDFS 65.0±4.9 75.3±4.6 57.7±1.5 51.2± 2.1 66.8±3.7 72.4±4.1
NDFS 65.2±4.8 77.4±4.0 58.0±1.8 51.8± 2.0 71.7±2.8 72.6±4.4
SDFS 65.6±5.0 78.2±4.2 58.9±2.0 52.6± 2.2 72.9±2.5 73.6±4.0

Table 2: Clustering Results (NMI % ± std) of Different Feature Selection Methods.

Dataset UMIST JAFFE BA MNIST Isolet1 COIL20
Baseline 43.0±3.7 68.2±6.5 38.5±3.1 52.4±5.0 55.4±3.5 57.5±3.2
LS 40.2±3.8 69.5±6.4 40.6±2.9 55.2±4.8 48.3±3.6 45.8±6.2
MCFS 42.8±3.6 72.4±5.8 41.2±2.8 56.8± 4.3 53.8±4.2 52.2±5.2
UDFS 44.5±3.5 71.2±6.2 42.2±2.6 57.6± 4.0 50.7±5.0 56.2±3.8
NDFS 45.1±3.2 72.5±5.2 42.9±2.8 58.2± 3.5 56.5±3.4 57.6±4.0
SDFS 45.6±3.0 73.2±5.1 43.8±2.5 59.1± 3.8 57.3±3.0 58.2±3.6

Table 3: Clustering Results (ACC % ± std) of Different Feature Selection Methods.
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