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Abstract. The duration of utterances is one of the effective factors on the 

performance of speaker verification systems. Text dependent speaker verification 

suffers from both short duration and unmatched content between enrollment and 

test segments. In this paper, we use Discriminative Gaussian Process Latent 

Variable Model (DGPLVM) to deal with the uncertainty caused by short duration. 

This is the first attempt to utilize Gaussian Process for speaker verification. Also, 

to manage the unmatched content between enrollment and test segments we 

proposed the localized-DGPLVM that trains DGPLVM for each phrase in dataset. 

Experiments show the relative improvement of 27.4% in EER on RSR2015. 

1 Introduction 

Speaker verification is the process of acceptance or rejection of a claim of identity by 

comparing the speaker models generated from the enrollment and test utterances. If 

the lexicon used for the test utterances is a subset of the phrases used in enrollment 

step, the task is called text dependent [1]. Otherwise, the process can be defined as 

text independent. In the case of exact content match between enrollment and test 

utterances in text dependent speaker verification we achieve higher accuracy than text 

independent verification. However, if there is a mismatch between test and 

enrollment, the performance will drastically degrade because of short duration in text 

dependent task. Recently, the sate-of-the-art method in text independent speaker 

verification area is the i-vector [2] framework that when is used with probabilistic 

linear discriminant analysis (PLDA) for session variability compensation results in 

considerable improvements [3]. However, the success of this paradigm in text 

dependent verification is questionable. In fact, short length utterances in text 

dependent speaker verification cause i-vectors to tend to zero [4]. The reason is that 

the i-vector extraction method due to using MAP point estimate for i-vector 

calculation ignores the posterior covariance. This covariance matrix that could be a 

representation of the estimation uncertainty is a function of the inverse of the zero 

order statistics, the number of frames that are aligned to the UBM components. So, in 

short duration speaker verification the covariance will be greater and its ignorance is 

not reasonable. 

 One of the successful attempts to deal with this problem is propagating the 

uncertainty to the backend of the system. In [5-7], authors propose a modified version 

of PLDA that integrates the uncertainty of i-vector estimation into the PLDA model. 

Kenny et al. investigated phrase-dependent version of PLDA with uncertainty 
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propagation in [8] to adapt their method to text dependent verification. Cumani et al. 

in [9] have proposed using i-vector full posterior distribution in PLDA model instead 

of its point estimation and derived the likelihood based on this posterior. In more 

recent studies [10-13], Kenny et al. used Joint Factor Analysis (JFA) based front end 

and to handle the uncertainty examined variational method to estimate the hidden 

variables. They did their experiments both in low dimension and supervector 

dimensional space. Experimental testbed in [10, 11] was RSR2015 part III [1] and to 

overcome the unmatched content problem the authors used tied mixture model to 

segment utterances into digits. In [11], the features passed to joint density backend as 

an analogue for PLDA and in [10], to consider the uncertainty of point estimates an i-

vector based backend was proposed. A new scheme based on using i-vectors in text-

prompted speaker verification is presented in [14]. It trains i-vector extractor and 

UBM for each word in dataset lexicon (i.e. Persian month names) separately.  

 In this paper, we propose a method based on Discriminative Gaussian Process 

Latent Variable Model (DGPLVM) [15] to learn a nonlinear mapping between the 

supervector space obtained from Universal Background Model (UBM) and a low 

dimensional latent space. The rationale behind this approach is that the large lexical 

variation in short duration utterances can be encoded by Gaussian process covariance 

function. On the other hand, the inter-speaker variability can be compensated using a 

discriminative prior for the latent space. In [16], authors present a principled multi-

task learning approach based on DGPLVM for face verification. Also, GPLVM with 

a shared discriminative prior is proposed by Eleftheriadis et al. for multi-view facial 

expression recognition [17-19]. In fact, using Gaussian process for speaker 

verification is introduced in this paper for the first time and our novelty is using a set 

of phrase-localized Gaussian processes.  

 The rest of this paper is structured as follows. In Section 2 we give a short 

overview of DGPLVM. Section 3 details proposed speaker verification based on 

localized-DGPLVM. The description of the dataset and experimental results are given 

in Section 4. Finally, Section 5 provides a brief conclusion of this paper. 

2 Discriminative Gaussian process latent variable model 

Gaussian process is a stochastic process that finds a distribution over a set of 

functions. In fact, it is a generalization of the Gaussian distribution that is completely 

defined by a mean and covariance function [20].  

 The Gaussian Process Latent Variable Model (GPLVM) can be considered as a 

mapping between high dimensional input data and a low dimensional manifold. Let 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}, where 𝑥𝑖 ∈ ℝ𝐷, be the input data and 𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑁}be the 

representation of data in the latent space, 𝑧𝑖 ∈ ℝ𝑑  (𝑑 ≪ 𝐷). The GPLVM to find the 

locale of data in the latent space maximizes the posterior probability of the latent 

variable given the observation and the parameters, 𝜃.To compute the posterior 

probability, we should compute the likelihood at first. It can be written as:  

𝑝(𝑋|𝑍, 𝜃) =  
1

√(2𝜋)𝑁𝐷|𝑲𝑿|𝐷
exp (−

1

2
𝑡𝑟(𝑲𝑿

−1𝑋𝑋𝑇)), 

where the elements of 𝐊𝐗, the covariance function, is calculated based on a kernel 

function as (𝑲𝑿)𝑖,𝑗 = 𝑘𝑋(𝑧𝑖 , 𝑧𝑗). Considering the prior of latent variable as a zero 

mean, unit covariance Gaussian distribution, the logarithm of the posterior will be: 
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ℒ = ℒ𝑟 + ∑ 𝜃𝑖𝑖 + ∑
1

2𝑖 ||𝑧𝑖||
2, 

ℒ𝑟 =  
𝐷

2
ln|𝑲𝑿| +

1

2
𝑡𝑟(𝑲𝑿

−1𝑋𝑋𝑇). 

 By varying the prior probability over latent variable, different versions of 

GPLVM can be resulted. A category of these prior probabilities is discriminative 

priors. Since the GPLVM with spherical Gaussian prior is unsupervised, to integrate 

the label information of different classes, LDA based prior was proposed in [15]. 

LDA is a technique to transfer features to a new space by finding a set of discriminant 

axes. The objective function in this method minimizes inter-class variability while 

maximizes between-class variability in the new feature space. Denoting 𝑆𝑏  and 𝑆𝑤 

between-class and within-class scatter matrices respectively, we have: 

𝐽(𝑍) = 𝑡𝑟(𝑆𝑤
−1𝑆𝑏), 

𝑆𝑏 =  ∑ (𝑧�̅� −  𝑧̅)(𝑧�̅� − 𝑧̅)𝑇𝑆
𝑖=1 , 

𝑆𝑤 = ∑ ∑ (𝑧𝑖
𝑠 −  𝑧�̅�)(𝑧𝑖

𝑠 −  𝑧�̅�)
𝑇𝑛𝑠

𝑠=1
𝑆
𝑖=1 , 

where 𝑧�̅� is the mean of the data belonging to class 𝑖 and 𝑧̅ is the mean of all samples. 

Also, 𝑆 is the class number and 𝑛𝑠 indicates the number of all the data samples in 

class 𝑖. Changing the prior in GPLVM to be based on this objective function, we 

obtain: 

𝑝(𝑍) =
1

𝑍𝑏
exp (−

1

𝜎2 𝐽−1), 

where 𝑍𝑏 represents normalization constant and 𝜎 is a global scaling of the prior. 

 Using this prior, the data points from the same class will be close in the latent 

space while the data from different classes will be far from each other. We will see in 

the next section that this kind of prior can help us to compensate the session 

variability in speaker verification. 

3 Proposed speaker verification system based on DGPLVM 

In order to learn low dimensional discriminative features from the speaker 

supervector space, we proposed using DGPLVM instead of factor analysis based 

approaches (e. g. i-vector and JFA). We believe that this model can improve the 

performance of speaker verification system when the utterances are too short. We also 

proposed to train DGPLVMs that are localized to single digits in our dataset.  

 Training separate subsystems containing UBM and i-vector extractor for each of 

the phrases in a Persian text-prompted dataset was first introduced in [14]. RSR2015 

digit part is a text-prompted dataset which contains utterances with random sequence 

of digits. So, the vocabulary includes 10 digits. In this paper, we train a UBM for each 

digit in the dataset like [14] and due to considering the temporal order of speech 

frames that provides useful information in text dependent speaker verification, HMM 

is used as UBM. Then, for each utterance the first order statistics, the supervectors 

obtained from concatenating the centralized mean of the frames aligned to each GMM 

component of HMM states, is extracted. Therefore, the UBM output will be a set of 

supervectors per digit. Subsequently, each set of supervectors is given to a DGPLVM 

to train it. At the evaluation step, after segmenting the test utterances to digits, 

dimension reduction will be done using the Gaussian process corresponding to each 

of the segmented digits. Finally, the score is computed as a linear combination of the 

scores corresponding to the uttered digits in the test utterance. The scores are 
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normalized by t-norm before combination. In this way, by using separate digit-level 

GPLVM the content variability is compensated and discriminative prior compensates 

the session variability. Figure 1 shows the block diagram of the different steps in the 

proposed method. 

 

 
 

Fig. 1: Block diagram for the proposed system 

4 Experiments 

In the following the experimental results obtained from the implementation of the 

proposed method in this paper are described. 

4.1 Experimental set-up and dataset 

In the third part of RSR2015 all the speakers (i.e. 300 speakers) uttered 3 random 

sequences of 10 digits and 10 random sequences of five digits. The 10-digit sequences 
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from evaluation set recorded in three sessions are used for model training and the test 

set contains all the 5-digit sequences. The experiments in this paper are limited to 

only female part of this dataset and the model is trained on the background set (bkg). 

 The experiments were based on feature vectors of length 60 including 19 PLP 

features together with log energy and their first and second derivatives. The window 

length and frame shift were 25 and 15 ms respectively. The features are extracted 

using HTK and CMVN was applied. HMMs with 8 states and 8 components were 

used as UBM and for digit level segmentation. Latent space dimensionality was set to 

300 and the cosine distance based scores were normalized using gender dependent t-

norm.  

 In this paper, Performance is represented in terms of equal error rate (EER) and 

minimum decision cost function (DCF). The parameters of DCF have those values 

used for NIST 2008 speaker recognition evaluation. To implement some parts of our 

verification system we used the MSR open source toolbox [21] and DS-GPLVM 

source code [17-19]. 

4.2 Results 

The results of our method are compared with the state-of-the-art JFA-based methods 

on RSR2015 [10, 11] and the results of the baseline GMM-UBM method reported in 

[11]. The summary of the best results reported in [10, 11] are represented in Table 1. 

This table also summarizes the results obtained from the baseline system and our 

proposed method using discriminative prior and without it. 

 It is apparent from Table 1 that the localized-GPLVM with spherical Gaussian 

prior outperforms the GMM_UBM system and when we use the discriminative prior 

the system exhibits better performance than the state-of-the-art methods [10, 11]. 

Indeed, by using our localized-DGPLVM scheme 27.4% relative improvement in 

EER as well as 5.1% relative improvement in DCF over the best result from JFA-

based method are observed. 

  

System EER (%) Min DCF 

digit dependent i-vector based backend [10] 5.9 0.297 

digit dependent z-vector with fusion [11] 6.08 0.291 

Baseline GMM-UBM [11] 8.36 0.383 

Localized-GPLVM 7.49 0.363 

Localized-GPLVM with discriminative prior 4.28 0.276 

Table 1: Summary of experimental results for female part of RSR2015 digits, eval set. 

5 Conclusion 

RSR2015 digits dataset has two constraints, first, constraint of content variability 

between test and enrollment utterances and second, very short speech segments. In 

this paper, to overcome the problem of uncertainty causing by short duration, we 

investigated using GPLVM with discriminative prior. The discriminative prior helps 

us to find a subspace that compensates session variability. Also, to handle the 

unmatched content, we have trained all parts of the verification system in digit level. 
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In fact, in our system we have separate Gaussian process based models which are 

trained locally per digit. The experimental results showed that this method improves 

the state-of-the-art speaker verification system on RSR2015 digits part. 
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