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Abstract. In this work, we present a comparative analysis of two meth-
ods — based on the autocorrelation and autocorrentropy functions — for
representing the time structure of a given signal in the context of the un-
supervised inversion of Wiener systems by Hammerstein systems. Linear
stages with and without feedback are considered and an immune-inspired
algorithm is used to allow parameter optimization without the need for
manipulating the cost function, and also with a significant probability of
global convergence. The results indicate that both functions provide ef-
fective means for system inversion and also illustrate the effect of linear
feedback on the overall system performance.

1 Introduction

Adaptive inverse modeling is an important task in view of its vast horizon of
practical applications in the signal processing area. This is due to the necessity
of understanding, analyzing, predicting and controlling real systems, which has
grown quickly with the technological and industrial advance [1]. Particularly in
this work, we consider the inverse modeling of an important model, the Wiener
system, which consists of a linear time-invariant (LTI) filter subsystem h(n)
followed by a memoryless, invertible, nonlinear distortion f [·]:

x(n) = f [e(n)] = f [h(n) ∗ s(n)] , (1)

where s(n) is the system input signal and x(n) is its output system. Despite
its simplicity, it can be applied within many contexts [1, 2], by providing a sim-
ple mathematical treatment for handling nonlinear dynamics. Various methods
have been developed for the task of Wiener system inversion, employing con-
cepts derived from linear optimization, nonparametric regression, and nonlinear
optimization with models such as polynomials, neural networks and orthogo-
nal functions [3]. Particularly, one straightforward structure to invert a Wiener
system is the well-known Hammerstein system, which is composed of a static
nonlinear block g[·] followed by a LTI subsystem w(n):

y(n) = w(n) ∗ u(n) = w(n) ∗ g [x(n)] , (2)

where x(n) is the input signal to the Hammerstein system and y(n) its output.
Taleb et al. [4] and Silva et al. [5] proposes blind methods to invert Wiener
systems through Hammerstein models. Consider that h(n), f [·] and s(n) are
unknown, but the latter is assumed to be composed of independent and identi-
cally distributed (i.i.d.) samples: in this context, the inversion problem consists

201

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



of finding w(n) and g[·] such that the output y(n) of the Hammerstein system
be as close as possible to the original signal s(n), despite a scale and time delay
ambiguity. Hence, this task is implemented via a maximal independence criteria
to estimate the optimal parameters.

However, if the samples of s(n) are dependent, the previously mentioned ap-
proaches are not capable of inverting the system. In this case, it is plausible to
adopt some dependence measure as criterion for the inversion task. Addition-
ally, by assuming statistically dependent samples, the scope of acceptable input
signals is expanded to include, for instance, encoded signals.

In the context of Information Theoretic Learning (ITL) [6], a new generalized
correlation function, called correntropy, has been introduced. Along with the au-
tocorrelation function, they share the property of taking into account the time
structure of a random process, but, differently from autocorrelation, correntropy
is not limited to second order moments. With this in mind, this work proposes
a modified version of the original method introduced in [5], for blind inversion of
Wiener systems, by considering the adoption of autocorrelation or correntropy
as dependence-based criteria, in association with an immune-inspired search al-
gorithm.

The rest of the paper is divided as follows: Section 2 details the two depen-
dence criteria to be comparatively studied through the remainder of the work;
Section 3 presents a brief introduction to the immune-inspired algorithm and its
application; Section 4 presents the results of numerical simulations and, finally,
conclusions are drawn in Section 5.

2 Dependence Measures

Correntropy or, more specifically, the autocorrentropy function was first intro-
duced by Santamaria et al. [7], who suggested an initial application to blind
deconvolution. It is a measure that generalizes the autocorrelation function to
nonlinear spaces: if {xn, n ∈ N} is a discrete-time, stationary stochastic process
within an index set N , then the autocorrentropy function is defined as

Vx(m) = E[kσ(xn − xn−m)], (3)

where E[·] denotes the statistical expectation and kσ(·) is generally the Gaussian
kernel function [8], with σ being the parameter known as the kernel size.

Using a series expansion for the Gaussian kernel, it can be shown that cor-
rentropy contains higher order information and, consequently, can be a more
robust dependence measure between time samples in comparison with the au-
tocorrelation function [7]. Given that the probability description of a process is
commonly unknown, correntropy can be easily estimated via the sample mean
over N samples of {xn}:

V̂x(m) =
1

N −m+ 1

N
∑

n=m

kσ(xn − xn−m). (4)

One can find several applications of correntropy in different domains, e.g.
nonlinear regression, equalization and blind source separation [8]. For blind
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deconvolution, the authors of [7] proposed a correntropy-based criterion which
comprises minimizing the objective function:

Jcor(θ) =
P
∑

m=1

(Vs(m)− Vy(m))2, (5)

where θ represent the deconvolution filter parameters and P is the number of
lags. This criterion tries to match the correntropy Vs(m) associated with the
source s(n) to the correntropy Vy(m) of the filter output y(n).

The “classical” dependence measure, the autocorrelation function, is easily
defined for {xn} as Rx(m) = E[xnxn−m]. Analogously, an autocorrelation-based
criterion [9] is straightforward to define:

JR(θ) =

P
∑

m=1

(Rs(m)−Ry(m))2. (6)

In the context of this work, where s(n) is an input to the Wiener system and
y(n) is the output of the Hammerstein system, we propose, analogously to the
linear blind deconvolution problem, to employ Eqs. (5) and (6) as criteria to
estimate the inverse model. The idea is that the temporal dependence signature
of the original signal provides sufficient information to estimate the Hammerstein
system and, consequently, to obtain an estimate for s(n).

3 Algorithm

As already mentioned, we consider the Hammerstein system defined in (2), to
invert the Wiener system. The structural components of the Hammerstein
system are comprised of a nonlinear function g[·], which is assumed to be an
odd-power polynomial of (2k − 1)-th order with strictly positive coefficients
g(x) = c1x

1 + c2x
3 + ...+ ckx

2k−1, ck ≥ 0,∀k, followed by an LTI sub-system
with impulse response w(n), which is represented by a finite number of coeffi-
cients that describes its transfer function. Despite the adoption by some authors
of a finite impulse response (FIR) model for the linear sub-system [10], we em-
ploy, in consonance with [5], a more powerful linear structure — the infinite
impulse response (IIR) filter —, with input-output relationship

y(n) =

M
∑

k=0

aku(n− k) +

Q
∑

k=1

bky(n− k), (7)

where M + 1 and Q are the number of adjustable coefficients ak and bk of
the model. Note that an immune-inspired algorithm is an appropriate search
procedure to work with this parametric model, due to the difficulties of gradient-
based methods to (i) avoid stability issues with IIR filters and (ii) achieving a
local optimum.

The identification of Hammerstein systems via Artificial Immune Systems
— specifically, the CLONALG algorithm [11] — was already considered in [5].
Due to the successful results presented by the technique in this previous pro-
posal, this work maintains CLONALG as the optimization method, but of a
different criteria, as mentioned in Section 2: the matching of correntropies and
autocorrelations (see Eqs. (5) and (6)).
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Algorithm 1 Pseudo-code of CLONALG algorithm for optimization
Require: [Ab] = clonalg(Ninitial, nC, b, range)
Ensure: Ab = random(Ninitial, range)
1: while iteration ≥ maxIT do

2: Solve fit = affinity(Ab)
3: C = clone(Ab, nC)
4: C∗ = mutate(C, fit)
5: Fit′ = affinity(C∗)
6: P = select(C∗, F it′)
7: Ab = replace(P, random(b, range))
8: end while

The CLONALG algorithm is inspired in the Clonal Selection principle, and is
characterized by a population of antibodies, Ab, whose affinity (or fitness) with
respect to the antigen Ag is represented by the objective function. The algorithm
is initialized with an Ab pool of fixed sizeNinitial, in which every Abi represents an
element from the parameter space, possibly an optimal solution. First, the fitness
function evaluates fAg(Abi) for all Ab members, then, it proceeds by selecting
a subset of n antibodies that have the highest affinities, which are subsequently
cloned. The set of nC clones then experience an affinity maturation process,
where the intensity of modifications is inversely proportional to their parent’s
affinity. In the sequence, the clones are compared to their parent in order to
select the one with the highest affinity. The main loop is concluded with a
random generation of b new antibodies that will replace the lowest affinity Ab in
the current population. The process repeats itself until a number of iterations
maxIT is executed. After that, the solution is the best individual of Ab (higher
affinity). Algorithm 1 presents the pseudo-code of CLONALG; for more details,
we recommend [5, 11].

To summarize, the CLONALG algorithm with real encoding is responsible
for searching the optimal parameters of g[·] and w(n) that minimize the cost
function, Jcor or JR, evaluated according Eqs. (5) and (6). The individuals of
the population represent the parameters of the Hammerstein system, according
to the parametric models previously defined in the beginning of this section.

4 Numerical Simulations

This section tests the proposal performance in two scenarios, with input signals
comprising dependent samples, continuously- or discretely-distributed. First, we
consider s(n) to be an uniform i.i.d. sequence submitted to a linear precoder with
transfer function P (z) = 1 + 1z−1 [7]. Its autocorrentropy and autocorrelation
are estimated from 500 samples, which are distinct from the (unknown to the
algorithm) input to be submitted to the Wiener system. For the discrete case,
s(n) is an i.i.d. signal with samples drawn from the alphabet {−1,+1} submitted
to the same linear precoder P (z), whose autocorrentropy functions is analitically
given in [7] and Rs(m) = σ2

sδ(m − 1) + 2σ2
sδ(m) + σ2

sδ(m + 1), where σ2
s is

its variance. Finally, we consider the Alternate Mark Inversion (AMI) source,
whose dependent symbol sequence is drawn from the alphabet {−1, 0,+1}, its
autocorrentropy function is also defined in [7] and Rs(m) = − 1

2σ
2
sδ(m − 1) +
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σ2
sδ(m) − 1

2σ
2
sδ(m + 1). For all scenarios, N = 2000 unit-variance samples of

s(n) are considered, where the resulting signal x(n) is provided to the algorithm.
The number of lags is P = 10 and the kernel size is defined as σ = 0.4.

The algorithm is tested considering distinctM andQ values. The CLONALG
parameters were adjusted to the values suggested in [5], i.e. 300 iterations, 50
individuals, and 10% of new individuals inserted per iteration. Other CLONALG
parameters were defined with the aid of a preliminary cross-validation routine,
which comprised 10 independent trials of the algorithm, with the correntropy
cost function, for each possible configuration: the clone number parameter β ∈
{0.1, 0.2, 0.3} and the mutation rate ρ ∈ {2, 3, 4, . . . , 8} [11]. The selected values
were β = 0.1 and ρ = 4.

The performance is measured by the output signal to noise ratio SNR =
10 log10 E[y2(n)]/E[(s(n) − y(n))2] averaged over a set of 10 independent tri-
als of the algorithm. In a first scenario, the Wiener system is modeled by a
minimum phase system with coefficients H(z) = 1 + 0.5z−1 and nonlinear dis-
tortion f(e) = sign(e) 3

√

| e |, the polynomial model is set to k = 3. The second
scenario analyzes the algorithm in a more complex situation, f(e) = tanh(3e)
and H(z) = 1 − 0.0919z−1 + 0.2282z−2 − 0.1274z−3 + 0.1408z−4 − 0.0189−5 +
0.0173z−6 − 0.0072z−7 + 0.0038z−8, with the polynomial model set to k = 5.
Table 1 shows the mean SNR for the three distributions in both scenarios. A
highlighted value corresponds to the best result for each criterion.

In a general perspective, the autocorrelation and the correntropy-based cri-
teria provided good performances in inverting the original system. One can see
that the correntropy-based criterion presented the best results: for all cases in
the first scenarios and for the precoded binary signal in both scenarios; however,
this criterion showed an inferior overall performance for the continuous signal
and AMI line code in the 2nd scenario, where autocorrelation performed better.
Furthermore, it is possible to see that the feedback loop in the linear filter was
pertinent to build up the inversion performance, since most of the top scores,
for both criteria, were obtained with Q ≥ 1. In terms of criteria, it is not con-
clusive which one of the two possibilities is preferable, hence demanding a more
thorough analysis. Withal, both indicate that the exploration of the temporal
structure of the input signals can lead to the inversion of Wiener systems.

5 Final Remarks

This work presented a comparison between two strategies for quantifying the
time structure of a signal in the context of the problem of unsupervised Wiener-
Hammerstein inversion: the autocorrelation and autocorrentropy functions. The
possibility of linear feedback was taken into account and different simulation
scenarios were considered. An immune-inspired algorithm was employed in view
of the characteristics of the associated optimization problem. The results have
shown that both statistical methods are feasible, and also revealed the potential
of using feedback loops.
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1st Scenario 2nd Scenario

M
Q

0 1 2 0 1 2

Uniform

1 N/A
14.8568 10.5581

N/A
6.6408 7.1136

14.6424 12.1894 8.4698 7.5135

2
6.9127 6.5298 6.5864 5.3037 3.5200 3.4118
9.6851 9.9486 8.0404 5.6166 4.6532 4.3149

3
4.2240 7.8640 7.0788 5.9823 2.7248 2.7801
7.1719 7.2597 6.1361 4.1090 3.1194 3.1099

Binary

1 N/A
42.3971 34.1152

N/A
27.1582 263274

8.3664 6.0335 11.4609 6.8779

2
15.4638 15.0029 33.4532 27.2379 27.0057 28.3819

9.3447 7.2518 8.7425 5.6971 6.1671 7.9212

3
24.5195 26.0103 27.8254 22.3939 25.6450 26.1593
10.1324 6.6126 7.8646 6.3156 6.4826 8.7940

AMI

1 N/A
76.5697 36.7313

N/A
5.6105 1.4308

14.8651 16.5883 8.7712 8.6935

2
5.2648 15.6042 11.5516 0.7853 0.1777 3.6273
6.5509 14.7809 10.7013 4.1404 4.2678 5.3170

3
18.4655 5.6490 11.8754 3.4488 4.1253 3.0500
7.9706 8.4627 10.2360 3.1774 4.0420 5.3144

Table 1: Results for the first and second scenarios. Top values of each cell
correspond to the technique with Jcor(·) and the lower values with JR(·).
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