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Abstract. Machine learning has provided, over the last decades, tools for 

knowledge extraction in complex medical domains. Most of these tools, though, 

are ad hoc solutions and lack the systematic approach that would be required to 

become mainstream in medical practice. In this brief paper, we define a machine 

learning-based analysis pipeline for helping in a difficult problem in the field of 

neuro-oncology, namely the discrimination of brain glioblastomas from single 

brain metastases. This pipeline involves source extraction using k-Means-

initialized Convex Non-negative Matrix Factorization and a collection of 

classifiers, including Logistic Regression, Linear Discriminant Analysis, 

AdaBoost, and Random Forests.  

1 Introduction 

Machine learning (ML) has become, over the last few decades, a provider tool for 

knowledge extraction in complex medical domains. In few domains is this truer than 

in oncology [1]. Most of these tools, though, are ad hoc solutions that lack the 

systematic approach that would be required to be accepted as routine medical 

practice.  

 This brief paper defines one such ML-based analysis pipeline for a challenging 

problem in the field of neuro-oncology, namely that of differentiating a glioblastoma 

(GBM) from a single brain metastasis (MET) mass. This is a critical problem because 

of the different clinical approaches required for optimal treatment. GBMs are known 

to have an infiltrative nature and may benefit from a supra-maximal resection volume 
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[2], in which the required resection region is larger than the abnormal area seen on 

Magnetic Resonance Imaging (MRI). On the other hand, METs tend to be more 

spatially circumscribed and effective tumour resection can be performed with 

narrower margins. Unfortunately, due to their radiological resemblance (necrosis, 

enhancement of the tumor periphery and edema), MRI does not provide sufficient 

discriminative power and, more often than not, a definitive diagnosis requires post-

surgical histopathological analysis. However, a non-invasive procedure is preferred 

because of the possible morbidity caused by the biopsy or because the tumor is 

located in a critical area of the brain. Previous studies [3-6] have alternatively used a 

different magnetic resonance modality, namely Magnetic Resonance Spectroscopy 

(MRS). MRS provides metabolic (biochemical) information about the investigated 

tissue; it can be single-voxel (SV), where information is read from one volume of 

interest or multi-voxel (MV), using a grid/matrix of many contiguous SVs (actually, 

SV-like spectral vectors, spv). However, there are also various difficulties when 

dealing with this kind of data, several pertaining to the discriminatory problem itself 

such as small sample size and class imbalance, and others to the intrinsic nature of 

MRS, such as high dimensionality. Previous studies have tackled these issues by 

employing dimensionality reduction techniques [4] and/or robust learners [3]. 

 The proposed pipeline for this difficult clinical task involves the combined use 

of Convex Non-negative Matrix Factorization (cNMF) for MRS source extraction and 

a collection of statistical and ML classifiers, including Logistic Regression (LR) in 

different variants, Linear Discriminant Analysis (LDA), AdaBoost, and Random 

Forests (RF). We report on the performance of the pipeline and argue that, if 

validated, our methodology could also serve for improved resection strategies. We 

aim to set this as an example of employing currently available techniques to build a 

system that works outside the “comfort zone” of neatly curated databases. This is 

because, beyond the data issues outlined above, data acquisition in this field may 

often be suboptimal for circumstantial reasons (e.g., a tumor located close to the 

skull) or due to technical errors. The remainder of this paper is structured as follows: 

Section 2 describes the dataset and the pipeline construction, Section 3 provides an 

assessment of the pipeline performance, and finally Section 4 provides conclusions 

and future research directions. 

2 Materials and methods 

2.1 Materials 

The analyzed data were acquired at 1.5T and long echo time (LTE, 135 ms) at 

Inselspital, Bern, Switzerland. The dataset comprises 48 MV grids (a total of 8,720 

spv), 32 of which came from GBM patients (6,442 spv) and the remainder 16, from 

MET patients (2,278 spv). Echo time is an important parameter (can be either 

short/STE or long) as it determines the types of metabolites that can be observed in 
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the spectrum.  LTE was chosen for this particular study because lactate, which can be 

regarded as a marker of infiltration [7], is less obstructed by the lipid peak than in 

STE. Furthermore, it is also known that LTE acquisitions are less prone to baseline 

distortions. All data were preprocessed as in [3]. Only the physiologically relevant 

MRS frequency interval between [4.20-0.50] parts per million (ppm) was used, thus 

giving us a vector of 195 intensity values for the analysis of each spectrum. 

2.2 Machine learning pipeline description 

The aim of the proposed pipeline is to i) predict whether a new case is a GBM or a 

MET and ii) provide a metabolic/nosologic map
2
 that can be of practical use to the 

radiologist/neurosurgeon. Given the reduced number of available cases, a leave-one-

out (LOO) cross-validation loop was used for the evaluation of results.  

 cNMF [8] is first applied to the training set, extracting three basis vectors, 

henceforth called sources. This choice is based on the hypothesis that cases will 

mainly consist of three tissue types – normal brain, necrotic tumoral core and 

infiltrative tissue (mostly in the GBM). cNMF was  initialized using k-means, which 

was in turn initialized using the k-means++ algorithm [9]. This was followed by 

normalization of each row of the mixing matrix; then, using the normalized mixing 

matrix, three grids were built for each patient. Each element of a grid represents the 

contribution of the respective source to an individual voxel, i.e. the 195 intensity 

values of the corresponding spectrum. Every grid was then transformed into a binary 

image, via Otsu thresholding [10]. From the untransformed grids we extract mean, 

standard deviation, skewness and kurtosis; from the binary images we extract the 

perimeter to area ratio, eccentricity, filled area, major axis length, minor axis length, 

solidity and orientation.. This results in 33 features per patient (11×3 sources). 

 Using these transformed data, five classifiers, including linear and nonlinear 

types were built: LR, LR with a stratified 3-fold cross-validation loop to choose the 

regularization value (LRCV), LDA, AdaBoost, and a RF. LDA was used as a baseline 

to gauge to what extent the classes were linearly separable. The penalty norm used for 

LRCV was l
2
. Fifty decision trees were used as base estimators for AdaBoost, while 

ten estimators were used for RF; bootstrap samples of the training set were used to 

build the trees and the maximum number of features considered when looking for the 

best split was the square root of the total number of features. All nodes were 

expanded until all leaves were pure. For the remaining test patient, the three 

previously extracted sources were kept and non-negative least squares was used to 

estimate the corresponding mixing matrix. This procedure was repeated for feature 

extraction and feed the result to the classifiers. ROC curves were obtained for all 

classifiers and optimal thresholds were chosen according to Youden’s index (YI) [11]. 

                                                           
2
 Graphical representation of the spatial distribution of a given pathology. 
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3 Results 

The cNMF source extraction results, reported in Figure 1, were very stable (that is, 

regardless of the fold, the extracted sources remained similar). The source 

representing normal brain (top row, right) was exactly the same for all folds; the 

necrotic source (top row, left) showed slight variation only in the lipids peak 

([1.28:0.9] ppm); the infiltrative source (bottom row) also exhibited slight variation 

for the inverted lactate peak around 1.25 ppm.  

  

 
Fig. 1: Average amplitude (n = 48) of the three extracted sources: top row left) 

necrosis, right) normal brain tissue; bottom row) infiltration. The (rather small) 

standard deviation across all folds is represented as an envelope of the solid line.  

 

Table 1 displays several classification metrics, including accuracy, sensitivity, 

specificity, mean F1-score and balanced error rate (BER) for the optimal threshold, 

for each individual classifier. The best threshold was found to be 0.5 for LDA and LR 

and 0.6 for LRCV, AdaBoost, and RF. The values for YI can also be found in Table1. 

ROC curves and AUCs for all classifiers can be found in Figure 2 (GBM was taken as 

the positive class).   

4 Discussion and conclusion 

From the previous results, it is worth highlighting that the RF performs quite 

consistently across all metrics and far better than any of the alternative classifiers, 
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coming first or at worse second-best (specificity). It does so at the price of unbalanced 

sensitivity/specificity, as GBM cases are far better classified than MET.  

 In fact, an interesting thing to note is that our pipeline has more difficulty in 

correctly classifying METs. This could be because of class imbalance, or maybe 

because the pipeline focuses on infiltration and it is known that some subtypes of 

MET can also present an infiltration pattern [12]. Besides diagnostic classification, 

the first stage of the proposed pipeline could also be used as a guide for surgery 

planning, by creating an RGB image from the values in the cNMF mixing matrix, 

which could be used as a map descriptor for tumor infiltration. 

 A previous study by Wijnen et al. [6] that also used MV MRS data on the same 

problem, reported similar results (AUC = 0.91) with an LDA classifier that uses three 

peak ratios as features. However, their methodology implies manual voxel selection 

based on the co-registered MRI, whereas ours is independent of the MRI. 

Furthermore their sample size is smaller (15 GBM patients and 15 MET patients) and 

with fewer total spv per case (270 for GBM and 195 for MET), thus perhaps leading 

to overly optimistic results. 

 

Classifier (thr./YI) Accuracy Sensitivity Specificity F1 Score BER 

LR (0.5/0.28) 0.70 0.84 0.43 0.76 0.33 

LRCV (0.6/0.43) 0.79 0.93 0.5 0.78 0.20 

RF (0.6/0.71) 0.89 0.96 0.75 0.89 0.09 

LDA (0.5/0.40) 0.70 0.71 0.68 0.71 0.31 

AdaBoost (0.6/0.59) 0.79 0.78 0.81 0.80 0.22 

Table1: Optimal (according to the threshold selected by YI) performance metrics for 

the investigated classifiers. Best results highlighted in bold. 
 

 
Fig. 2: ROC curves for the investigated classifiers. 
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 The reported analyses have the limitation of using data from a single clinical 

center; they include, however far more spectra than any similar study. All in all, the 

proposed ML-based pipeline uses well-established methods to provide support in the 

challenging task of differentiation between GBM and MET, potentially improving the 

performance of a neuroradiologist in this task. It has the advantage of being 

completely automatic in the sense that the analysis does not require direct model 

manipulation from a neuroradiologist. 
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