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Universidad Politécnica de Madrid - Departamento de Sistemas Informáticos
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Abstract. In certain domains, where model interpretability is highly
valued, feature selection is often the only possible option for dimensionality
reduction. However, two key problems arise. First, the size of data sets
today makes it unfeasible to run centralized feature selection algorithms
in reasonable amounts of time. Second, the impossibility of labeling data
sets rules out supervised techniques. We propose an unsupervised feature
selection algorithm based on a new formulation of the leverage scores.
We derive an efficient parallelized approach over the Resilient Distributed
Datasets abstraction, making it applicable to the enormous data sets often
present in network traffic analysis.

1 Introduction

Dimensionality reduction (DR) is often a crucial step for the successful appli-
cation of machine learning (ML). Some DR techniques, such as Principal Com-
ponent Analysis, transform the data into a new subspace that can be hard to
interpret for domain experts. To overcome this, feature selection (FS) can be
employed. In fields such as bioinformatics, economics or network traffic anal-
ysis, model interpretability is a frequent requirement when using ML, making
FS attractive as an approach for DR. However, two obstacles must be overcome.
First, the huge size of data sets today can make FS algorithms too slow. Second,
many FS techniques are supervised and need ground truth. Some of the existing
proposals for unsupervised FS are based on the column subset selection problem
(see section 2) following both randomized [1], and deterministic approaches [2].
The former lacks an efficient strategy for finding the minimizing subset, while
the latter can be inaccurate in practice. Some recent proposals try to handle
large volumes of data, like [3], designed for MapReduce —inefficient when re-
peatedly accessing data—, or [4], for MPI, which lacks fault tolerance, resilience
and data distribution. In [5], a distributed algorithm is proposed, but it is just
a straightforward implementation of an existing algorithm and does not exploit
the nature of the problem for improved efficiency. In the context of ML for net-
work traffic analysis, FS is often supervised, which is not feasible for big data, or
done by expert criteria. An overview of the existing applications of ML to this
domain can be found in [6]. We propose an FS algorithm that overcomes these
issues. It is unsupervised, based on a new formulation of the leverage scores
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(project CogNet)

617

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



independent of the target rank, and therefore applicable to unlabeled data. In
addition, we derive an efficient parallelization over the recently surfaced Resilient
Distributed Datasets paradigm (RDD) [7], the rapidly evolving new paradigm
for Big Data processing whose in-memory computation capabilities enable it to
outperform MapReduce. We implement it on the Apache Spark distributed com-
puting platform, the official RDD implementation, making it able to handle huge
data sets. To demonstrate the performance of our algorithm and draw domain-
relevant conclusions, we test it on a 183GB, 1-month-long Internet traffic data
set captured at the core network of an Internet Service Provider (ISP).

2 Algorithm Description

Notation: We denote sets by uppercase letters (S,Θ) and matrices by uppercase
bold letters (A,Σ). Lowercase bold letters (x) denote column vectors. A(i,:) is
the i-th row of A (understood as a column vector), and A(Θ,:) is the rows of A
whose indices are the elements of Θ (we use analogous notation for columns, as
well as vectors). By RDD(S) we denote a Resilient Distributed Dataset whose
entries are the elements of S. W(c,xn,π) denotes a multivariate instance of
Wallenius’ noncentral hypergeometric distribution with parameters c,xn,π.

The Column Subset Selection Problem (CSSP) is an interesting framework
for unsupervised feature selection methods, and is defined as follows:

Definition 1 Column Subset Selection Problem. Given a matrix A ∈ R
m×n

and a positive integer k, let Ak denote the set of matrices comprised of k columns
of A. Find C such that

C = argmin
X∈Ak

‖A−XX+A‖F

where X+ denotes the Moore-Penrose pseudoinverse of X.

The CSSP is believed to be NP-Hard. Inspired by [1], our proposal (Algorithm
1) approximately solves the CSSP in two phases: a random and a deterministic
one. The random phase performs a biased column sampling process based on
the statistical leverage scores, as suggested in [1] and [8]. However, we propose
a new formulation of these scores that does not require a target rank (equation
(1)), making it possible to choose the value of k a posteriori. For an arbitrary
choice1 of γ ∈ N

∗, we draw γ samples from W(k log k,1n,π) (Algorithm 1, line
4), where 1n is a vector of n ones. This way, we obtain γ judiciously sampled
random subsets of k log k non-repeating column indices with biased probability
vector π = (p1, p2, . . . , pn). Column i is thus sampled with probability pi, with

pi ∝ ‖ (ΣVT )(:ρ,i)‖22 (1)

where V is a matrix whose columns are the right singular vectors of A, Σ is the
diagonal matrix of the decreasing singular values of A and ρ is an estimation
of the numerical rank. Intuitively, high values of pi correspond to columns that
are well aligned with a singular vector and that, because of the orthogonality of
V, are almost orthogonal to the space spanned by the rest of the columns. By

1We set γ = min(4
√

0.3n−k , 40) to increase performance if k approaches the numerical rank.
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Algorithm 1

1: procedure ChooseColumns(A, k, γ)
2: rows ← RDD({A(i,:)|1≤i≤m})
3: for i = 1, . . . , γ do
4: Ω̃ ∼ W(k log k, 1n,π)
5: Ωi ← RRQRk

(
(ΣVT )(:,Ω̃)

)

6: end for
7: QTA← rows.map{ x =>
8: output x(Θ)x

T

9: }.reduce{(X,Y) => X+Y}
10: P ← ∅
11: for i = 1, . . . , γ do
12: CT

i A← (QTA)(Ω′
i
,:);

13: CT
i Ci ← (QTA)(Ω′

i,Ωi)

14: P ← P ∪ {(CT
i Ci)

−1CT
i A}

15: end for
16: broadcast(P, T,Ω)
17: δ ← rows.map{ x =>
18: for i = 1, . . . , γ do
19: di ← x− xT

(Ωi)
C+

i A

� Note that C+
i A ∈ P

20: end for
21: output (‖d1‖22, . . . , ‖dγ‖22)
22: }.reduce{(x,y) => x+ y}
23: output Ωi with i = argmin

i
δi

24: end procedure

multiplying by the singular values we favor the leading singular vectors. It is not
necessary to compute all vectors, since the entries of VT that are multiplied by
a small singular value vanish and do not contribute noticeably to the final score.
In practice, the top-ρ values and vectors of a numerically rank-ρ matrix will
suffice. For each column index sample Ω̃ we then run an RRQR factorization [9]
on (ΣVT )(:,Ω̃), keeping only the first k elements from the resulting permutation.
The deterministic phase computes the approximation error on the Frobenius
norm for all candidates and chooses the one that minimizes it. We define the
residual error δi corresponding to candidate column choice i, with 1 ≤ i ≤ γ, as

δi = ‖A−CiC
+
i A‖F (2)

The computation of all these errors can be expensive, since it involves the
computation of γ pseudoinverses, as well as γ large matrix products and sub-
tractions. To significantly decrease the computation time needed, we derive a
parallelized algorithm that yields the δi’s efficiently and in a scalable manner.
Since for any real m× k matrix C, with k ≤ n,

C+A = argmin
rankX=k

‖A−CX‖F (3)

it can be easily seen that the computation of the different columns of C+A
is equivalent to solving n instances of linear regression (it suffices to see that
(C+A)(:,i) = argmin

x
‖A(:,i) −Cx‖2 for i ∈ {1, . . . , n}). Therefore, the problem

(3) for a particular column subset Ci has the following analytical solution [10]:

C+
i A = (CT

i Ci)
−1CT

i A (4)

Since CT
i Ci ∈ R

k×k for all i, the computation of this inverse in the context of
feature selection, where normally k � n, can be done fast. Singular matrices
can be discarded, since they correspond to candidates with rank less than k.
In any case, the distribution of equation (1) significantly decreases the chance
of obtaining a singular matrix at this step. In practice, the different candidate
column subsets tend to share many columns in common. Therefore, it is desirable
to avoid computing all instances of CT

i Ci and CT
i A separately (each of which
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is a k ×m by m× k and a k ×m by m× n matrix product respectively), since
it would involve redundant computations. To this end, we propose the following
method. Let Ωi denote the set of column indices obtained after running the
RRQR factorization on the i-th random column sample of ΣV T , and we define
Θ =

⋃γ
i=1 Ωi and Q = A(:,Θ). We can then obtain any instance of the desired

matrices as CT
i A = (QTA)(Ω′

i,:)
and CT

i Ci = (QTA)(Ω′
i,Ωi) (lines 12, 13),

where Ω′
i denotes the set of indices of the columns of matrix Q that correspond

to the columns whose indices in matrix A are those in Ωi, i.e. Q(:,Ω′
i)
= A(:,Ωi).

This way we can compute (4) for all i through one τ × m by m × n matrix
product (i.e. QTA), for some τ ≤ n. This derivation allows for a very efficient
parallelization on the RDD paradigm. The product QTA is computed via the
map-reduce operation shown in lines 7–9. We then build and broadcast the
set P =

⋃γ
i=1 C

+
i A (lines 14, 16), incurring just O(γkn) network usage2, and

compute all the residuals by the map-reduce operation detailed in lines 17–22.

3 Experimental Results

To validate the performance of our algorithm, we employed a traffic data set
captured at the core network of a medium-sized ISP during one month3. Each
day of the month consists of a 4-10GB file containing from 12 to 27 million 5-tuple
TCP flows4, totalling 534 million data samples and 183 gigabytes, expressed in
95 features. The experiments were run on a cluster of 10 worker nodes with
an Intel quad-core processor and 4 GB of RAM each, connected through an
ethernet switch with a capacity of 100 Mbps on each link. Our algorithm was
implemented using Scala 2.10.4 on Spark 1.4.1. The Hadoop 2.6 Distributed
File System was used for data storage and access. We ran the algorithm on each
day separately (obtaining 30 feature subsets) and evaluated the results. We set
k = 10 to obtain a manageable number of features for domain expert analysis.

Ratio to SVD. To evaluate the quality of the chosen feature subsets, we
measure the ratio of the residual obtained with our algorithm to that of the best

rank-k approximation, ‖A−CC+A‖F

‖A−Ak‖F
, where A ∈ R

m×n is the data, C ∈ R
m×k is

a subset of its columns and Ak is the best rank-k approximation to A. Figure 1
shows the described ratio on each day for three feature subsets: the one chosen by
the algorithm on that day (algorithm ratio), the 10 features that appear the most
often among the daily chosen subset throughout the month (best app), shown in
table 1, and the top-10 features according to their accumulated leverage scores
(best scores). The value of algorithm ratio remains consistently close to 1.05,
revealing that the analyzed data contains feature subsets that can approximate
the full data set almost as well as the top-k singular vectors, and that the
proposed algorithm can find such a subset. The ratio for best app is slightly
higher, but moderate throughout the month, suggesting that there exists a single
subset of features that can consistently provide good approximation errors.

2In network traffic analysis n is usually small, around a few hundred, and normally k � n.
Finally, γ is a user-defined parameter that need not be more than a few dozen.

3The data span the period from April 7th to May 6th 2015.
4We aggregated the network packets into flows using Tstat 3.0. http://tstat.polito.it/
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Fig. 1: Ratio to SVD
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Fig. 2: LS of the top-5 features
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Applicability of our algorithm. To assess the usefulness of our approach
in the domain of network traffic analysis, we examine the chosen features and
their leverage scores. We collect the top-10 that appear the most often among
the chosen subset throughout the month (table 1, where prefixes c and s indicate
client-to-server and server-to-client respectively). The leverage scores of these
features are shown in figure 2. The fact that these features have consistently
high leverage scores5 suggests that the sampling strategy proposed in equation
(1) is a good heuristic for randomly sampling candidate features. It is inter-
esting to point out the relationship between the obtained features and those
most frequently present in the literature. Some of them (durat, c cwin ini) are
consistent with choices often made when applying machine learning techniques
to network traffic, usually relying on expert criteria or supervised methods [6].
Others (to the best of our knowledge) had not been previously identified as being
especially relevant or informative (s ttl max, c ttl max, c f1323 opt, c pkts retx,
s ack cnt p and s bytes retx ). Finally, we did not detect c rtt max or s rtt avg
in the literature, although related metrics such as inter-packet arrival times do
appear. It would be interesting to study the linear dependencies between these
sets of features and determine which tend to approximate data best.

Scalability. Figures 3 and 4 show running times with respect to the number
of workers in the cluster (with 20 million rows) and the size of the data set (in
millions of rows), exhibiting significant benefits to be gained from parallelization
and roughly linear scalability with respect to the number of data samples.

4 Conclusions and future work

We presented an efficient parallelized unsupervised feature selection algorithm
and applied it to the domain of network traffic analysis. We showed that a feature

5The highest observed leverage scores overall are below 0.18.
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Top-10 appearing features
Code Description Days present

c rtt max Maximum RTT 19

s ttl max Maximum Time To Live 18

s rtt avg Average RTT 16

durat Flow duration 15

c f1323 opt Window scale option sent (boolean) 14

c pkts retx Number of retransmitted segments 12

c cwin ini First in-flight size 11

s ack cnt p Segments with ACK=1 and no data 11

c ttl max Maximum Time To Live 11

s bytes retx Number of retransmitted bytes 10

Table 1: Top features, based on the times they were chosen throughout the month.

subset can retain almost as much information as the SVD, and that a fixed
feature subset can consistently provide a good approximation. We identified
network traffic features previously proposed in the literature, as well as others
that had not been previously recognized as useful. We verified the efficiency
and linear scalability of our algorithm, which make it applicable to huge data
sets. In the future we plan to explore alternative sampling strategies, non-linear
approximations and online versions of the algorithm. We also plan to study what
the leverage scores and the chosen features can reveal about network behavior.
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