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Abstract. The quality of grid-based subspace clustering is highly depen-
dent on the grid size and the positions of dense units, and many existing
methods use sensitive global density thresholds that are difficult to set a
priori. We propose PSCEG, a new approach that generates an exact grid
without the need to specify its size based on the distribution of each di-
mension. In addition, we define an adaptive density estimator that avoids
dimensionality bias. A parallel implementation of our algorithm using
Resilient Distributed Datasets achieves a significant speedup w.r.t. the
number of cores in high dimensional scenarios. Experimental results on
synthetic and real datasets show PSCEG outperforms existing alternatives.

1 Introduction and Related work

Clustering techniques group similar objects into entities called clusters. How-
ever, clusters can hide in different subspaces of the full feature space. Subspace
clustering algorithms try to find all low-dimensional clusters hidden in subspaces
of high dimensional data. One of the main families of such algorithms, known as
grid-based methods, partition the data space into non-overlapping cells by dis-
cretizing each dimension into small units. In many of these algorithms a global
density threshold is used to determine whether a unit is dense. Candidate dense
units of higher dimensionality are iteratively generated in a bottom-up fashion.
Afterwards, adjacent dense cells in the same subspace are merged together to
form clusters. CLIQUE [1] is recognized as the pioneering grid-based method for
subspace clustering. It is the first to use the anti-monotonicity property to prune
sparse candidates. Mafia [2] improves CLIQUE by generating an adaptive grid in
order to have less candidates in higher dimensions. Parallelism is also introduced
to strengthen scalability and efficiency. Another variant of CLIQUE is ENCLUS
[3], which uses entropy to search for interesting subspaces that may contain clus-
ters. Similar to ENCLUS, SCHISM [4] tries to find interesting subspaces using
support and Chernoff-Hoeffding bounds. nCluster [5] further improves CLIQUE
by partitioning each dimension into many overlapping small bins, and then se-
lecting only maximal nClusters for higher dimensionality. Similar conclusions
are provided in experimental evaluation works [6, 7, 8]: the efficiency and ac-
curacy of existing grid-based subspace algorithms is highly dependent on the
proper tuning of the granularity of the grid, the positions of dense units, and
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the density thresholds. It has also been observed that a global density threshold
will cause a bias to a certain dimensionality [6, 9]. Dimensionality bias is first
discussed in [9] referring to the fact that a tight global density threshold may
distinguish clusters well from noise in low dimensions but lead to a loss of high
dimensional clusters. However, a loose one can detect high-dimensional clusters
as well as extensive untranslatable low dimensional clusters.

We propose a novel approach that generates an exact grid without the need
to specify the size of the grid a priori. It can capture the positions of dense units
and proper size of the grid based on the data distribution of each dimension.
To avoid the effect of dimensionality bias, we conduct subspace clustering with
different granularities by defining and using a novel unbiased density estimator
that is adaptive to dimensionality. A new parallel subspace clustering algo-
rithm called PSCEG is proposed and implemented using Resilient Distributed
Datasets (RDDs) [10], the rapidly evolving new paradigm for Big Data process-
ing, on top of the Spark distributed computing platform. Experimental results
on synthetic and real datasets show that PSCEG has better scalability, accuracy
and efficiency compared to existing alternatives. In addition, PSCEG achieves
a significant speedup w.r.t. the number of cores in high dimensional scenarios.

2 PSCEG algorithm

Given a dataset of d dimensions and o objects, we use the following notation:
D: the set of all dimensions, i.e. D = {1, 2, 3, . . . , d}; O: the set of all objects;

Vm: the set of object values for the m-th dimension; omn ∈ R: object value for
the m-th dimension and the n-th object (1 ≤ m ≤ |D|, 1 ≤ n ≤ |O|); CDUk: the
set of candidate dense units for dimensionality k; DUk: the set of dense units
for dimensionality k; B: set of equally sized intervals.

PSCEG solves the problem of subspace clustering by first generating a grid
and then detecting subspace clusters of increasing dimensionality iteratively like
other grid-based algorithms. The novelty of our algorithm is twofold: (1) It does
not need an a priori choice of grid size to find the exact positions of dense units,
and (2) it updates the adaptive density thresholds for the generation of higher-
dimensional dense units. A definition of dense units is given in [7]. In order to
avoid the dimensionality bias, we propose a more general definition considering
variable density thresholds instead of the global one used in [7].

Definition 1 Dense unit. A dense unit in subspace S ⊂ D is a set of 1-
dimensional clusters C = {Cm|m ∈ S} such that ∀Cm ∈ C |{o ∈ O|om ∈
Cm}| > τCm , where τCm = α(max(Cm)−min(Cm))|O|

max(Vm)−min(Vm) .

Cm represents the usual notion of density-based cluster as defined in the paper
of DBSCAN [11]. α is a parameter called cluster dominance factor [2] that esti-
mates the density of the expected clusters. By updating the density thresholds
for each dimensionality, our density estimator avoids a dimensionality bias.

The dataset is preprocessed so that the object values of all dimensions fall
in a user-specified range [V1, V2]. Our algorithm consists of two phases: the
generation of an exact grid without the need to specify the grid size a priori
and the iterative process of finding subspace clusters using adaptively updated
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Algorithm 1 PSCEG(dataRDD, α, θ)

Phase 1: GenerateExactGrid(dataRDD, α, θ)

1: CDU1 ← ∅ DU1 ← ∅
2: for m ∈ D do
3: B = {[iΔ+ V1, (i + 1)Δ+ V1) | 0 ≤ i < N, i ∈ N}
4: ∀b ∈ B : ωb ← |{o ∈ O|omn ∈ b}|
5: B ← {b ∈ B|ωb ≥ α|O|

N }
6: CDU1 ← CDU1 ∪ DBSCAN(B, ε = αθ|Vm|,minPoints =
αθ|O|, {ωb|b ∈ B})

7: for cdu1 ∈ CDU1 do
8: ∀Cm ∈ cdu1 : τcdu

1

Cm
← α(max(Cm)−min(Cm))|O|

max(Vm)−min(Vm)

9: end for
10: end for
11: ∀cdu1 ∈ CDU1 : wcdu1 ← |{o ∈ O|∀Cm ∈ cdu1 omn ∈ Cm}|
12: DU1 ← {cdu1 ∈ CDU1|∀Cm ∈ cdu1 : wcdu1 ≥ τCm}
Phase 2: Grid-basedClustering(dataRDD, α)

13: k← 2 FinalDUs← ∅
14: while |CDUk| > 0 do
15: CDUk ← {duk−1

1 ∪duk−1
2 | duk−1

1 , duk−1
2 ∈ DUk−1

∧ |duk−1
1 ∩duk−1

2 | =
k − 2}

16: CDUk ← {cduk ∈ CDUk|∀cduk−1 ⊂ cduk : cduk−1 ∈ DUk−1}
17: for cduk ∈ CDUk do
18: ∀Cm ∈ cduk : τcdu

k

Cm
← α(max(Cm)−min(Cm))|O|

max(Vm)−min(Vm)

19: end for
20: ∀cduk ∈ CDUk : wcduk ← |{o ∈ O|∀Cm ∈ cduk omn ∈ Cm}|
21: DUk ← {cduk ∈ CDUk|∀Cm ∈ cduk : wcduk ≥ τCm}
22: FinalDUs ← FinalDUs ∪ {duk−1 ∈ DUk−1|�duk ∈ DUk : duk−1 ⊂

duk}
23: k ← k + 1
24: end while
25: return FinalDUs

density thresholds. Pseudo-code of the centralized version of PSCEG is given
in Algorithm 1. In Phase 1, PSCEG starts by partitioning the value range of
each dimension into N equally sized intervals of length Δ = V2−V1

N (line 3). The
object count in each interval represents its weight (line 4). Such intervals and
their weights are used as inputs for DBSCAN 1(line 6), whose output is a set of
1-D candidate dense units. By using weighted objects as the input of DBSCAN
we can reduce the time complexity from O(|O|2) to O(N2) with slight loss of
accuracy. θ regulates ε and minPoints (line 6). Intervals having a density lower

1We use the implementation of DBSCAN in scikit-learn which can take weighted objects
as input (http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html).

583

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



than α|O|
N are filtered out before DBSCAN. Initial density thresholds are calcu-

lated using our density estimator (line 8). The object count in each candidate
dense unit (cdu1) is set as its weight (line 11), and those whose weight is higher
than the corresponding threshold enter the next phase as dense units (du1s) (line
12). Phase 2 is the iterative process of detecting subspace clusters of increas-
ing dimensionality. It first generates cduks by combining two duk−1s that share
exactly k − 2 1-D clusters (line 15). The anti-monotonicity property [1] is used
to prune redundant cduks (line 16). The density thresholds are recalculated to
adapt to the increasing dimensionality (line 18). The weight of each cduk is then
assigned (line 20). A cduk is recognized as a duk if its weight is larger than all
thresholds of all 1-D clusters (line 21). Those duk−1s that are not subsets of any
duk are reported as final dense units (line 22). This iterative process terminates
when no more dense units appear.

The parallelization of PSCEG is based on the Resilient Distributed Datasets
(RDDs) [10] paradigm. The key idea distinguishing RDD from MapReduce is
its in-memory computation capabilities. Operations on RDDs run in parallel on
all cores. PSCEG operates on RDDs as follows: firstly all object values are read
and stored in data-RDD. The partitioning, the initialization of the weights and
the filtering (lines 3-5) are done by a map, a word-count-like [12] and a filter op-
eration on data-RDD respectively. One or more 1-D centralized DBSCANs (line
6) run in parallel for each dimension on each core, combining the results and
storing them in CDU-RDD via a reduce operation. The initialization of density
thresholds (line 8) is done by a map operation. The assignment of weights and
the generation of DU (line 11-12) are a word-count-like and a map operation
on CDU-RDD. The result is stored in DU-RDD. The generation and pruning of
CDUk is done using two map operations on DU-RDD and CDU-RDD. Lines
18-21 are done like lines 8-12. The final results are filtered using a map operation
on DU-RDD and then collected in the master node.

3 Experimental results

We provide experimental results considering accuracy and scalability w.r.t. the
size and dimensionality of the data, as well as the dimensionality of hidden sub-
space clusters in comparison with MPI-based pMafia (the only available similar
parallel algorithm that we know of). We reimplemented pMafia on Spark for
the consistency of the experiments. The experiments were run on a 17-node
cluster (each with 4 Core(TM) i5 CPUs with 8GB of RAM) using Spark 1.4.1.
We used a synthetic data generator (similar to those described in [2, 8]) to test
scalability. Public datasets sset1 2 (synthetic) and glass 3 (real) were used to
test the accuracy of both algorithms.

Scalability. To assess the scalability w.r.t. dataset dimensionality we gen-
erated 30,000-object datasets of increasing dimensionality, with one 10-D cluster
and one 4-D cluster. We set θ = 0.01, which gives very robust performance for
PSCEG. Figure 1a shows run-times and clusters found by PSCEG and pMafia

2Clustering datasets in University of Eastern Finland, http://cs.joensuu.fi/sipu/datasets/
3UCI machine learning repository, http://archive.ics.uci.edu/ml/
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Fig. 1: Runtime w.r.t. dimensionality
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Fig. 3: Speedup

for different values of α. Experimentally we observed that the lower the value
of α, the higher the accuracy but the lower the efficiency. PSCEG finds the
correct clusters with a relatively large value of α = 1.35, in linear time w.r.t.
dimensionality. pMafia needs to decrease α to 0.45 to find the 10-D cluster,
showing dramatically increased runtime and suggesting at least quadratic scal-
ability (note the different y axes) and failing to find the 4-D cluster. Figure 1b
shows scalability w.r.t. cluster dimensionality on 100-D datasets with one cluster
of varying dimensionality and one 4-D cluster. PSCEG found all clusters effi-
ciently, while pMafia only found one higher-dimensional cluster after decreasing
α to 0.45, incurring dramatically increased computational costs. Figure 2 shows
scalability w.r.t. the number of objects on 20-D datasets containing one 2-D
and one 4-D cluster. The labels at each point represent accuracies for the found
clusters. pMafia failed to find the 2-D cluster, while PSCEG found both with
remarkable accuracy. Figure 3 shows the performance of our algorithm for (a)
one 100-D dataset of 30,000 objects (high dimensionality) where one 14-D clus-
ter was hidden in the whole feature space, and (b) one 20-D dataset of 1,000,000
objects (large datasize) that contains one 4-D and one 2-D clusters. We define
speedup = T1C

TNC where T 1C is the execution time using 1 core, and TNC is the
execution time using N cores. Near-linear speedup is achieved in both cases.

Accuracy. We applied PSCEG and pMafia to two public available datasets
with ground truth information, in which the correlations between dimensions
remain unknown, but all objects are classified with class tags. Sset1 is a pub-
lic synthetic 2-D dataset widely used as benchmark for testing accuracy. It
contains 15 2-D clusters with different shapes, positions and densities. With
α = 0.25, θ = 0.1, our algorithm succeeded in finding all 15 clusters, with aver-
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age accuracy around 90%. We repeated pMafia with different values for each of
the three parameters, and the best result showed 13 clusters with a big cluster
that consisted of 2 real clusters, with average accuracy below 50%. We also com-
pared both algorithms on glass, used previously in an experimental evaluation
[7]. PSCEG reported two meaningful subspace clusters: one 8-D cluster that
contains 82.2% of all 163 objects of class ”window”, and one 6-D cluster that
successfully classified 72.4% of objects with the ”headlamps” class tag. Classes
”containers” and ”tableware” were not found because there are too few objects
of each class (less than 14) to reach the density thresholds. pMafia only found
a set of 9-D small clusters each containing no more than 10 objects. This result
separated the ”window” class into pieces and was difficult to interpret.

4 Conclusions

We presented PSCEG, a novel parallel subspace clustering algorithm that can
generate an exact grid of proper size without the need to specify its size and
capture the positions of dense units. We also propose a novel adaptive density
estimator that is not biased to a certain dimensionality. Experimental results on
both synthetic and real datasets show that PSCEG has much better accuracy,
scalability and efficiency compared to existing grid-based subspace clustering
algorithms, especially for detecting overlapping subspace clusters.
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