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Abstract. With the appearance of huge data sets new challenges have
risen regarding the scalability and efficiency of Machine Learning algo-
rithms, and both distributed computing and randomized algorithms have
become effective ways to handle them. Taking advantage of these two ap-
proaches, a distributed learning algorithm for two-layer neural networks
is proposed. Results demonstrate a similar accuracy when compared to
an equivalent non-distributed approach whilst providing some advantages
that make it especially well-suited for Big Data sets: over 50% savings in
computational time; low communication and storage cost; no hyperparam-
eters to be tuned; it allows online learning and it is privacy-preserving.

1 Introduction

Machine learning (ML) algorithms have achieved much success in the learning
of small-scale problems. Recently, however, with the appearance of huge data
sets, new challenges are raised regarding their scalability and efficiency. One of
the most promising lines of research for data learning is distributed computing
but only a few distributed learning algorithms have been proposed. Notable
attempts can be found for Support Vector Machines (SVMs) [1, 2]. However,
there have been very few studies conducted on the paradigm of neural networks.
Randomized algorithms have become an effective way to handle large scale data
sets. In this sense, Scardapane et al. [3] have recently proposed two learn-
ing algorithms for Random Vector Functional-Link (RVFL) networks. RVFLs
are feedforward neural networks with a single hidden layer whose input weights
are randomly chosen and fixed in advance before training process. Despite this
simplification, they possess universal approximation capabilities providing a suf-
ficiently large set of basis functions [4]. The key idea of the approach is to let
all nodes train a local model using a subset of the training data and then obtain
output weights of the master learned model. Two techniques for obtaining the
common output weights can be applied: decentralized average consensus [5] and
alternating direction method of multipliers [6]. These algorithms allow the nodes
to obtain a single model, whose testing performance is similar to that obtained
by a centralized model. Another variant for RVFL was proposed by Alhamdoosh
[7] who developed a fast solution on building neural network ensembles. The hid-
den layer parameters of RVFL networks are initialized randomly and then the
least square method with negative correlation learning scheme is employed to
analytically calculate the output weights of these networks. Another emerging
approach is the Extreme Learning Machine (ELM) which provides unified solu-
tions to generalized feedforward networks. ELM theories [8, 9] show that hidden
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neurons are important but can be randomly generated having both universal ap-
proximation and classification capabilities. Taking into account the benefits of
distributed and randomized learning to deal with massive data applications, we
propose a new distributed and learning algorithm for two-layer neural networks.

2 Background

For the sake of comprehension, this section contains some previous results [10]
that will be used as foundation of this work. Specifically, we present a supervised
algorithm that obtains the optimal weights of a feedforward neural network with
a single layer (no hidden layers) and nonlinear output functions. In contrast to
some other well-known algorithms it backpropagates the network’s desired output

signal instead of the error between the desired and the real outputs. In Figure
1 this process is depicted graphically. For each neuron j with nonlinear output
function fj , and for each input pattern xs, the corresponding desired output djs
is backpropagated using the inverse of the output function f−1

j . Afterwards, the
error is minimized between the internal network value zjs at the output of the
summation and f−1

j (djs).
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Fig. 1: Architecture of a single-layer feedforward neural network.

The details of this learning algorithm can be found in [10], in which a theorem
is demonstrated stating that the minimization of the MSE between d and y at the
output of the nonlinearity is equivalent, up to first Taylor order, to minimizing
the MSE before the nonlinearity. Mathematically, it can be written as:

min
W

E[(d− y)T (d− y)] ≈ min
W

E[(f ′(d̄) · ǭ)T (f ′(d̄) · ǭ)] (1)

where d̄ = f−1(d), ǭ = d̄−z and (·) denotes the element-wise Hadamard product
of vectors. As a consequence, it is a restriction for the nonlinear output functions
fj to be inverse and derivative. In the following, we centre our attention on only
one neuron (J = 1) in order to avoid a cumbersome derivation (to solve the
full layer of neurons the process has to be applied identically for every neuron).
Therefore, using this theorem, the weight vector w ∈ R

(I+1) of a neural network
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has to be a stationary point of the right hand side of equation (1). Taking
derivatives of this expression and equating to 0, a system of linear equations
Aw = b is obtained where A and b are defined as:

A =

S
∑

t=1

xtx
T
t f

′2(d̄t) ; b =

S
∑

t=1

d̄txtf
′2(d̄t) (2)

Once A and b are known, the network’s weightsw can be easily calculated. This
approach is applicable in both batch and incremental learning environments as
in equation (2) A and b are a summation on S. Therefore, we can save At and
bt obtained at time t, and when new information is supplied up to time t+p we
can incrementally construct At+p and bt+p using equation (2).

3 Distributed learning for Two-layer Neural Networks

In this work, we take advantage of the formulation cited in Section 2 to propose
a distributed and fast training algorithm for two-layer feedforward neural net-
works. Our proposal will follow a typical scenario of the Map/Reduce paradigm
consisting in learning separately from each of the distributed data sets (ideally,
in parallel) and posterior model integration. Based on these premises, and for a
scenario with N learning sites or nodes, Algorithm 1 is proposed. It is worth re-
membering that we centred our explanations on one output neural networks, for
the sake of simplicity, and thusw2 corresponds to a vector. However, considering
several outputs for multiclass problems is straightforward.

4 Experimental results

The method was tested on five public data sets whose characteristics are sum-
marized in Table 1. The first two data sets were obtained from the Data Mining
Institute of the University of Wisconsin1 and the rest from the UCI Machine
Learning Repository2. All the data sets are binary classification problems. These
data sets were selected to consider cases of different sizes, from a small data set,
such as the Brightdata, to large data sets like Higgs Bosons. For all the exper-
iments, the sigmoid function was used as transfer function for the hidden layer
while a linear function was used for the output layer. The weight matrix of the
first layer (W1) was randomly established using the Nguyen-Widrow algorithm.
The number of hidden neurons was varied between 8 and 1024, except for the
Higgs Bosons that was varied between 16 and 4096 in order to obtain better
results. Simulations were carried out using a Intel Xeon W3550 processor with
3.07GHz clock speed.

In the experiments, we compared the results obtained using 1 node (as a base
case) and 4 nodes (as a distributed case). For the Higgs data set, due to its large
size, 200 nodes were employed. In order to obtain more reliable results we applied

1http://research.cs.wisc.edu/dmi
2https://archive.ics.uci.edu/ml
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Algorithm 1 Distributed learning algorithm
Input : N local data sets (D1, D2, . . . ,DN ). Each data set Dn comprises both inputs
Xn = {xn1,xn2, . . . ,xnS} and desired outputs Dn = {dn1,dn2, . . . ,dnS}
Output : The optimal weight matrix/vector W1,w2 of the two-layer neural network global

model.

A starting node, arbitrarily established at node n=1, randomly generates a matrix of weights
W1 for the first layer of the neural network.

Broadcast this W1 matrix to every learning node to be used as the first layer of weights of
their local neural networks.

At every learning node n=1, . . . , N

Train locally its neural network: propagate the inputs to the second layer using W1.
For this second layer, compute A and b using Equation 2 needed to obtain w2.

Send matrix A and vector b to the starting node (n=1).
end.

At node 1, set the initial accumulative matrix A∗ = A1 and the initial accumulative vector
b∗ = b1. Afterwards, from n=2, . . . ,N using the incremental properties of A and b

Compute the accumulative matrix A∗ = A∗ +An.

Compute the accumulative vector b
∗ = b

∗ + bn.
end

At this moment, matrix A
∗ and vector b

∗ at the starting node n = 1 contains the same
information as if they were calculated using a central, non distributed, approach. Thus, at
the starting node n = 1 compute the optimal weights w2 for the second layer of the neural
network solving the system of linear equations with A∗ and b∗.

Broadcast the final global model W1,w2 to every node, if needed.

Data set name Features Instances
Bright data 14 2,462
Dim data 14 4,192
MAGIC Gamma Telescope 10 19,020
MiniBooNE particle identification 50 130,064
Higgs Bosons 28 11,000,000

Table 1: Description of the data sets

10-fold cross-validation. The Area Under de ROC Curve (AUC) has been used
to determine an operational point, specifically, to establish the upper number of
hidden neurons to use in the study. Figure 2 contains the results varying the
number of hidden neurons. As can be seen there are no significant differences
between results of 1 and 4 nodes due to the distribution of data. Figure 3 shows
the mean CPU time required for the whole learning process again comparing 1 vs
4 nodes. As expected, the distributed approach brings a considerable savings in
computational time. Specifically, focusing on the interesting operational points
of the AUC, in all experiments a time reduction over 50% is achieved with 128
hidden neurons that grows over 60% when 256 or 512 hidden neurons are used.
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Fig. 2: Mean test AUC vs the number of hidden neurons.
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Fig. 3: Mean CPU time (in seconds) vs the number of hidden neurons.

5 Conclusions

The presented approach has some advantages that make it specially well-suited
for learning from Big Data sets:

• It does not contain any hyperparameter to be tuned for a good performance,
unlike most of the classic ML methods. The usual way for hyperparameter
optimization has been grid search which is simply an exhaustive searching
through a manually specified subset of the hyperparameter space. This is
specially tedious or simply unaffordable for huge data sets.
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• Local learning is very fast, as W1 is obtained randomly and w2 is obtained
by solving a system of linear equations.

• Due to the incremental capacity of the one-layer neural network learning al-
gorithm, the local training step at each node can be further parallelized by
dividing the dataset through multiple processors, cores, GPUs, etc. and finally
obtaining A and b in accumulative way. This would speed up local learning.

• This incremental capacity also provides a solution when all training data is
not available from the beginning but come in a sequential order. The model
can be updated quickly with future data without the need to be completely
retrained.

• During learning, only parameters A and b are shared through the network
thus avoiding moving raw data among nodes. This is a remarkable property
as: a) it is privacy-preserving, a critical aspect in many real applications, and
b) it minimizes communication and storage costs.
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