
Distributed learning algorithm for feedforward

neural networks

Oscar Fontenla-Romero, Beatriz Pérez-Sánchez, Bertha Guijarro-Berdiñas
Diego Rego-Fernández

Department of Computer Science, University of A Coruña, Spain

Abstract. With the appearance of huge data sets new challenges have
risen regarding the scalability and efficiency of Machine Learning algo-
rithms, and both distributed computing and randomized algorithms have
become effective ways to handle them. Taking advantage of these two ap-
proaches, a distributed learning algorithm for two-layer neural networks
is proposed. Results demonstrate a similar accuracy when compared to
an equivalent non-distributed approach whilst providing some advantages
that make it especially well-suited for Big Data sets: over 50% savings in
computational time; low communication and storage cost; no hyperparam-
eters to be tuned; it allows online learning and it is privacy-preserving.

1 Introduction

Machine learning (ML) algorithms have achieved much success in the learning
of small-scale problems. Recently, however, with the appearance of huge data
sets, new challenges are raised regarding their scalability and efficiency. One of
the most promising lines of research for data learning is distributed computing
but only a few distributed learning algorithms have been proposed. Notable
attempts can be found for Support Vector Machines (SVMs) [1, 2]. However,
there have been very few studies conducted on the paradigm of neural networks.
Randomized algorithms have become an effective way to handle large scale data
sets. In this sense, Scardapane et al. [3] have recently proposed two learn-
ing algorithms for Random Vector Functional-Link (RVFL) networks. RVFLs
are feedforward neural networks with a single hidden layer whose input weights
are randomly chosen and fixed in advance before training process. Despite this
simplification, they possess universal approximation capabilities providing a suf-
ficiently large set of basis functions [4]. The key idea of the approach is to let
all nodes train a local model using a subset of the training data and then obtain
output weights of the master learned model. Two techniques for obtaining the
common output weights can be applied: decentralized average consensus [5] and
alternating direction method of multipliers [6]. These algorithms allow the nodes
to obtain a single model, whose testing performance is similar to that obtained
by a centralized model. Another variant for RVFL was proposed by Alhamdoosh
[7] who developed a fast solution on building neural network ensembles. The hid-
den layer parameters of RVFL networks are initialized randomly and then the
least square method with negative correlation learning scheme is employed to
analytically calculate the output weights of these networks. Another emerging
approach is the Extreme Learning Machine (ELM) which provides unified solu-
tions to generalized feedforward networks. ELM theories [8, 9] show that hidden

375

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

neurons are important but can be randomly generated having both universal ap-
proximation and classification capabilities. Taking into account the benefits of
distributed and randomized learning to deal with massive data applications, we
propose a new distributed and learning algorithm for two-layer neural networks.

2 Background

For the sake of comprehension, this section contains some previous results [10]
that will be used as foundation of this work. Specifically, we present a supervised
algorithm that obtains the optimal weights of a feedforward neural network with
a single layer (no hidden layers) and nonlinear output functions. In contrast to
some other well-known algorithms it backpropagates the network’s desired output

signal instead of the error between the desired and the real outputs. In Figure
1 this process is depicted graphically. For each neuron j with nonlinear output
function fj , and for each input pattern xs, the corresponding desired output djs
is backpropagated using the inverse of the output function f−1

j . Afterwards, the
error is minimized between the internal network value zjs at the output of the
summation and f−1

j (djs).

1

x
1s

w
ji

f
1

f
2

f
J

d
1s

Error before

nonlinear function

f
J-1

z
2s

z
J-1s

z
Js

z
1s

y
1s

y
2s

y
J-1s

y
Js

d
2s

d
J-1s

d
Js

x
Is

Fig. 1: Architecture of a single-layer feedforward neural network.

The details of this learning algorithm can be found in [10], in which a theorem
is demonstrated stating that the minimization of the MSE between d and y at the
output of the nonlinearity is equivalent, up to first Taylor order, to minimizing
the MSE before the nonlinearity. Mathematically, it can be written as:

min
W

E[(d− y)T (d− y)] ≈ min
W

E[(f ′(d̄) · ǭ)T (f ′(d̄) · ǭ)] (1)

where d̄ = f−1(d), ǭ = d̄−z and (·) denotes the element-wise Hadamard product
of vectors. As a consequence, it is a restriction for the nonlinear output functions
fj to be inverse and derivative. In the following, we centre our attention on only
one neuron (J = 1) in order to avoid a cumbersome derivation (to solve the
full layer of neurons the process has to be applied identically for every neuron).
Therefore, using this theorem, the weight vector w ∈ R

(I+1) of a neural network

376

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

has to be a stationary point of the right hand side of equation (1). Taking
derivatives of this expression and equating to 0, a system of linear equations
Aw = b is obtained where A and b are defined as:

A =

S
∑

t=1

xtx
T
t f

′2(d̄t) ; b =

S
∑

t=1

d̄txtf
′2(d̄t) (2)

Once A and b are known, the network’s weightsw can be easily calculated. This
approach is applicable in both batch and incremental learning environments as
in equation (2) A and b are a summation on S. Therefore, we can save At and
bt obtained at time t, and when new information is supplied up to time t+p we
can incrementally construct At+p and bt+p using equation (2).

3 Distributed learning for Two-layer Neural Networks

In this work, we take advantage of the formulation cited in Section 2 to propose
a distributed and fast training algorithm for two-layer feedforward neural net-
works. Our proposal will follow a typical scenario of the Map/Reduce paradigm
consisting in learning separately from each of the distributed data sets (ideally,
in parallel) and posterior model integration. Based on these premises, and for a
scenario with N learning sites or nodes, Algorithm 1 is proposed. It is worth re-
membering that we centred our explanations on one output neural networks, for
the sake of simplicity, and thusw2 corresponds to a vector. However, considering
several outputs for multiclass problems is straightforward.

4 Experimental results

The method was tested on five public data sets whose characteristics are sum-
marized in Table 1. The first two data sets were obtained from the Data Mining
Institute of the University of Wisconsin1 and the rest from the UCI Machine
Learning Repository2. All the data sets are binary classification problems. These
data sets were selected to consider cases of different sizes, from a small data set,
such as the Brightdata, to large data sets like Higgs Bosons. For all the exper-
iments, the sigmoid function was used as transfer function for the hidden layer
while a linear function was used for the output layer. The weight matrix of the
first layer (W1) was randomly established using the Nguyen-Widrow algorithm.
The number of hidden neurons was varied between 8 and 1024, except for the
Higgs Bosons that was varied between 16 and 4096 in order to obtain better
results. Simulations were carried out using a Intel Xeon W3550 processor with
3.07GHz clock speed.

In the experiments, we compared the results obtained using 1 node (as a base
case) and 4 nodes (as a distributed case). For the Higgs data set, due to its large
size, 200 nodes were employed. In order to obtain more reliable results we applied

1http://research.cs.wisc.edu/dmi
2https://archive.ics.uci.edu/ml

377

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Algorithm 1 Distributed learning algorithm
Input : N local data sets (D1, D2, . . . ,DN). Each data set Dn comprises both inputs
Xn = {xn1,xn2, . . . ,xnS} and desired outputs Dn = {dn1,dn2, . . . ,dnS}
Output : The optimal weight matrix/vector W1,w2 of the two-layer neural network global

model.

A starting node, arbitrarily established at node n=1, randomly generates a matrix of weights
W1 for the first layer of the neural network.

Broadcast this W1 matrix to every learning node to be used as the first layer of weights of
their local neural networks.

At every learning node n=1, . . . , N

Train locally its neural network: propagate the inputs to the second layer using W1.
For this second layer, compute A and b using Equation 2 needed to obtain w2.

Send matrix A and vector b to the starting node (n=1).
end.

At node 1, set the initial accumulative matrix A∗ = A1 and the initial accumulative vector
b∗ = b1. Afterwards, from n=2, . . . ,N using the incremental properties of A and b

Compute the accumulative matrix A∗ = A∗ +An.

Compute the accumulative vector b
∗ = b

∗ + bn.
end

At this moment, matrix A
∗ and vector b

∗ at the starting node n = 1 contains the same
information as if they were calculated using a central, non distributed, approach. Thus, at
the starting node n = 1 compute the optimal weights w2 for the second layer of the neural
network solving the system of linear equations with A∗ and b∗.

Broadcast the final global model W1,w2 to every node, if needed.

Data set name Features Instances
Bright data 14 2,462
Dim data 14 4,192
MAGIC Gamma Telescope 10 19,020
MiniBooNE particle identification 50 130,064
Higgs Bosons 28 11,000,000

Table 1: Description of the data sets

10-fold cross-validation. The Area Under de ROC Curve (AUC) has been used
to determine an operational point, specifically, to establish the upper number of
hidden neurons to use in the study. Figure 2 contains the results varying the
number of hidden neurons. As can be seen there are no significant differences
between results of 1 and 4 nodes due to the distribution of data. Figure 3 shows
the mean CPU time required for the whole learning process again comparing 1 vs
4 nodes. As expected, the distributed approach brings a considerable savings in
computational time. Specifically, focusing on the interesting operational points
of the AUC, in all experiments a time reduction over 50% is achieved with 128
hidden neurons that grows over 60% when 256 or 512 hidden neurons are used.

378

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Hidden Neurons
8 512 1024

A
U

C

0.7

0.8

0.9

1

1 Node
4 Nodes

(a) Bright data set.

Hidden Neurons
8 512 1024

A
U

C

0.7

0.8

0.9

1

1 Node
4 Nodes

(b) Dim data set.

Hidden Neurons
8 512 1024

A
U

C

0.7

0.8

0.9

1

1 Node
4 Nodes

(c) MAGIC data set.

Hidden Neurons
8 512 1024

A
U

C

0.7

0.8

0.9

1

1 Node
4 Nodes

(d) MiniBooNE data set.

Hidden Neurons
16 512 4096

A
U

C

0.4

0.5

0.6

0.7

200 Nodes

(e) Higgs data set.

Fig. 2: Mean test AUC vs the number of hidden neurons.

Hidden Neurons
8 512 1024

T
im

e
(s

)

0

100

200

300
1 Node
4 Nodes

(a) Bright data set.

Hidden Neurons
8 512 1024

T
im

e
(s

)

0

100

200

300

400

500
1 Node
4 Nodes

(b) Dim data set.

Hidden Neurons
8 512 1024

T
im

e
(s

)

0

500

1000

1500

2000
1 Node
4 Nodes

(c) MAGIC data set.

Hidden Neurons
8 512 1024

T
im

e
(s

)

0

5000

10000

15000
1 Node
4 Nodes

(d) MiniBooNE data set.

Hidden Neurons
16 512 4096

T
im

e
(s

)

0

5000

10000
200 Nodes

(e) Higgs data set.

Fig. 3: Mean CPU time (in seconds) vs the number of hidden neurons.

5 Conclusions

The presented approach has some advantages that make it specially well-suited
for learning from Big Data sets:

• It does not contain any hyperparameter to be tuned for a good performance,
unlike most of the classic ML methods. The usual way for hyperparameter
optimization has been grid search which is simply an exhaustive searching
through a manually specified subset of the hyperparameter space. This is
specially tedious or simply unaffordable for huge data sets.

379

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

• Local learning is very fast, as W1 is obtained randomly and w2 is obtained
by solving a system of linear equations.

• Due to the incremental capacity of the one-layer neural network learning al-
gorithm, the local training step at each node can be further parallelized by
dividing the dataset through multiple processors, cores, GPUs, etc. and finally
obtaining A and b in accumulative way. This would speed up local learning.

• This incremental capacity also provides a solution when all training data is
not available from the beginning but come in a sequential order. The model
can be updated quickly with future data without the need to be completely
retrained.

• During learning, only parameters A and b are shared through the network
thus avoiding moving raw data among nodes. This is a remarkable property
as: a) it is privacy-preserving, a critical aspect in many real applications, and
b) it minimizes communication and storage costs.

6 Acknowledgements

This work has been supported in part by the Secretaŕıa de Estado de Investi-
gación of the Spanish Government (Grant TIN2015-65069-C2-1-R), and Xunta
de Galicia (Grant GRC2014/035) with the European Union FEDER funds.

References

[1] A. Navia-Vazquez and E. Parrado-Hernandez. Distributed support vector machines. IEEE
T Neur Net Lear, 17(4):1091–1097, 2006.

[2] P. A. Forero, A. Cano, and G. B. Giannakis. Consensus-based distributed support vector
machines. J Mach Learn Res, 11:1663–1707, 2010.

[3] S. Scardapane, D. Wang, M. Panella, and A. Uncini. Distributed learning for random
vector functional-link networks. Inform Sciences, 301:271–284, 2015.

[4] B. Igelnik and Y.-H. Pao. Stochastic choice of basis functions in adaptive function ap-
proximation and the functional-link net. IEEE T Neur Net Lear, 6(6):1320–1329, 1995.

[5] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked
multi-agent systems. In P IEEE, volume 95, pages 215–233, 2007.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Found. Trends

Mach. Learn., 3(1):1–22, 2011.

[7] M. Alhamdoosh and D. Wang. Fast decorrelated neural network ensembles with random
weights. Inform Sciences, 264:104–117, 2014.

[8] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: Theory and appli-
cations. Neurocomputing, 70:489–501, 2006.

[9] X. Bi, X. Zhao, G. Wang, P. Zhang, and C. Wang. Distributed extreme learning machine
with kernels based on mapreduce. Neurocomputing, 149(A3):456–463, 2015.

[10] O. Fontenla-Romero, B. Guijarro-Berdiñas, B. Pérez-Sánchez, and A. Alonso-Betanzos. A
new convex objective function for the supervised learning of single-layer neural networks.
Pattern Recogn, 43(5):1984–1992, 2010.

380

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

