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Abstract. Use of distributionally balanced folding to speed up the ini-
tialization phase of K-means++ clustering method, targeting for big data
applications, is proposed and tested. The approach is first described and
then experimented, by focusing on the effects of the sampling method
when the number of folds created is varied. In the tests, quality of the
final clustering results were assessed and scalability of a distributed im-
plementation was demonstrated. The experiments support the viability of
the proposed approach.

1 Introduction

Iterative relocation clustering algorithms are known to be sensitive to the initial
placement of the prototypes. Actually the twofold aim of clustering, to divide
data into groups where observations within a group are more similar to each
other than observations in other groups [1], is approached in the well-known
algorithms, most prominently in the classical K-means++ [2, 1], by using the
two main steps: i) initial location of K separate prototypes, ii) local refinement
(search) of the initial prototypes to get the final solution. Due to variations
of step i), it is known that this kind of algorithms do not guarantee unique
clustering result or convergence to the global minimum of the clustering error
(e.g., [1, 3, 4]).

The final clustering result can be improved by using some other than the
random strategy for the initialization [5]. Chen et al. [6] argue that in the high-
dimensional space data are inherently sparse. This is due to the well-known curse
of dimensionality [7]. For example, the random samples tend to concentrate on
the corners of a hypercube and the distance between each pair of observations
becomes almost the same for a wide variety of data distributions. Chen et al.
[6] conclude that, for small data sets, the method by Bradley and Fayyad [8],
where the original data set is first splitted into smaller subsets which themselves
are clustered, yielded to the best clustering results. In general, one agrees that
the initial prototypes should be as far from each other as possible (without
being outliers) [9, 1]. Lately, the K-means++ algorithm [10], where the random
initialization is based on a density function favoring distinct prototypes, has
become the most popular variant to initialize the K-means-type of algorithms.

Sampling is the basic approach to reduce the number of observations in statis-
tics. It has a natural role in big data applications to cope with data volume,
although one of the characteristics of big data [11] is precisely the lack of stable
distribution, especially with high veracity and velocity. But the way sampling
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is done matters, and this issue has mostly been considered in relation to the
well-known cross-validation, CV (see [12, 13] and articles therein). More pre-
cisely, the Distribution Optimally Balanced Stratified CV, DOB-SCV, has been
evaluated as an appropriate sampling method for large pool of datasets to ensure
good approximation of data density in the distinct folds created.

An approach where folding is applied with the K-means++ address the
special nature of a high-dimensional data by separating the observations more
clearly. This is combined with the good initialization strategies as mentioned
above: splitting of data and the distinct initial locations. According to our
knowledge, such techniques and in particular the DOB-SCV algorithm, has not
been previously suggested or tested in the big data clustering context. This is the
main goal of the paper, whose structure is as follows: In Section 2, we describe
the clustering approach and in Section 3 provide results from computational
experiments. The paper is shortly concluded in Section 4.

2 The Method

LetX be the given set of observations. In the initialization of the K-means++ al-
gorithm [10], one prototype is first selected at random from X. Then the rest

K−1 prototypes are selected fromX with probability d(x)
2
/
∑

x∈X d(x)
2
, where

d(x) is the smallest distance to a prototype that was already selected. Hence,
with high probability, one obtains a set of clearly distinct initial prototypes.

The DOB-SCV, as proposed in [12] (see [13] for the actual algorithm), was
targeted to create folds (disjoint subsets of data) for the cross-validation. Strat-
ification means that the folds are created classwise, or approximating the whole
data distribution if no labelling is available.

The basic strategy to create k folds is, interestingly, opposite to clustering:
select a random observation from class j, add it to the first fold and then add its
k−1 nearest class neighbors to different folds without replacement. This process
is then repeated until all the observations within class j are assigned to folds.
These steps are applied to all classes. As a result, in addition to the classical
stratification of approximating the class sizes, also class densities are preserved
in the folds. Our approach here is to use this approach to speed up the initial
search of distant prototypes in the K-means++ algorithm. From preliminary
tests that we have made with the available K-means implementations on the
popular Hadoop platform, we have noticed that the nondistributed initialization,
especially for the K-means++ implementations, takes most of the computing
time.

The proposed method is formalized in Algorithm 1. We let DOB-SCV to
form k distjoint folds {Xi}ki=1 from the data X. The initial selection of distinct
prototypes in K-means++ is then done in the folds where the best initial solution
by means of the overall clustering (least-squares) error is selected to initialize
the actual search (cf. [8]). Steps 1-2 in Algorithm 1 can be easily parallelized by
distributing folds to workers and using Single Program Multiple Data (SPMD)
model so that each worker processes its local fold. Communication between
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workers can be done with Message Passing Interface (MPI). Same folds and
workers can also be applied in the local refinement step of the K-means algorithm
in parallel using SPMD model and MPI, see [14].

3 Experimental results

Our first goal of the experiments is to compare how the initialization method
affects to the clustering results in comparison to the whole data K-means++ ini-
tialization. Secondly, we test the scalability of the proposed approach when the
number of folds is varied, by using SPMD implementation of Algorithm 1. As
reference, we used the implementation [15] for K-means++. Matlab Distributed
Computing Toolbox SPMD and Message passing functions were used for the
parallel implementation. All the tests were performed in Matlab 8.3.0 (R2014a)
environment. For the scalability tests, we used the Taito supercluster at IT
Center for Science in Finland. Cluster resources were utilized via Matlab Dis-
tributed Computing Server (MDCS). The tests were run in the parallel partition
with Sandy Bridge nodes having two eight-core Intel E5-2670 2.6 GHz processors
with 256 GB RAM (16 GB per core).

Quality experiments were run with 5 data sets: S-sets [16] and USPS database
[17]. S-sets consist of four real-valued 2-dimensional synthetic data sets gener-
ated from 15 gaussian distributions with known centers. Each S-set consists of
5,000 vectors. The overlappings of clusters increase from S1 to S4. The USPS is
a well-known benchmark of handwritten digit dataset with 9,298 16×16 images
and labels provided. This set consists of 10 classes. The number of clusters K
was fixed for S-sets to 15 and for USPS dataset to 10. For all datasets, the
variables were min-max scaled into [−1, 1].

We ran Algorithm 1 with varying the number of the folds k between 2 −
50 for the even numbers. For each k, K-means++ run was repeated k times
and the minimum sum-of-squared-errors, SSE, was used to select as the final,
reference clustering result. Tests were repeated 10 times for the both methods
with DOB-SCV refolding in Algorithm 1. Comparison of the clustering results
for K-means++ and Algorithm 1 was performed by analysing SSE and the
pairwise prototype distances. For the latter measure, we calculated the sum of
the smallest pairwise Euclidean distances, in such a way that each prototype
was linked to the corresponding prototype only once. These were then averaged

Algorithm 1 K-means++ with folding initialization

Input: Folds {Xi}ki=1 from DOB-SCV, number of clusters K.
Output: Set of prototypes C = {cj}Kj=1.

1: For each fold Xi do K-means++ clustering initialization.
2: For each set of prototypes Ci from a fold, calculate clustering error for the

whole data.
3: Select the set of prototypes Cm with the smallest clustering error.
4: Do the K-means search starting from Cm.
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Fig. 1: Normalized prototype distances between Algorithm 1 and K-means++.

over 10 testruns for each k and normalized by dividing the result with the sum
of the Euclidean norms of ground truth prototypes. For the USPS dataset, the
ground truth prototypes were calculated as the class means.

In Fig. 1, the behavior of the normalized prototype distances are depicted.
In general, all the results are very close to each other. We also observe that
the prototypes become more similar between the methods when k increases.
This might be due to the increase of the accuracy for both methods, more
precisely, the number of i) the initial prototypes for Algorithm 1 and ii) the
final prototypes for K-means++.

In Fig. 2, the SSE difference is the average SSE for the K-means++ which
is subtracted from the average SSE for Algorithm 1. The SSE differences were
again normalized, this time with the SSE for the ground truth prototypes. Al-
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Fig. 2: Normalized SSE difference between Algorithm 1 and K-means++.
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Fig. 3: Initialization and search phases wall times for parallellized Algorithm 1.

gorithm 1 occasionally gives smaller errors than the repeated, full K-means++,
especially for the smaller values of k. A strong variation of the SSE difference for
the dataset S1 is most likely a consequence of higher probability to get stuck in
a local minimum. For USPS, the SSE difference is close to zero for all the values
of k, which indicates that the accuracy of Algorithm 1 is improved when the
volume of the problem is increased. This is desirable in big data applications.

For the scalability tests with the implementation as described above, the
MNIST database [18] was used. MNIST is another classical benchmark with
handwritten digits that consists of 70,000 28×28 images with labels for 10 classes.
In the first experiment, the number of workers were varied as 1, 2, 4, 8, 16 and
32. We also increased the data volume to demonstrate the behaviour: each
data fold was copied 3 times for both observation and variable direction. Hence,
the total data size was approximately 210,000×2,352. The wall clock time in
Algorithm 1 for the initialization (Steps 1-3) and for the search phase (Step 4)
was measured, again repeating the folding 10 times and averaging the wall clock
times. Note that total time for the original (full data) K-means++ is given
with one worker in Algorithm 1. As we can see from Fig. 3a, initialization time
was reduced rapidly up to 8 workers until the time in communication starts to
dominate, especially for the search phase.

In the second experiment, the number of workers was fixed to 100 and data
size was varied approximately as, again using MNIST for copying, 210,000×2,352
(1 GB), 630,000×7,056 (10 GB) and 2,030,000×22,736 (100 GB). Algorithm 1
was ran once for each data and wall times were measured similarly as in the first
experiment. Results are shown in Fig. 3b, which demonstrates that proposed
method, indeed, scales for big data.

4 Conclusions

We proposed and tested distributionally optimal folding as an initialization
method for the K-means++ clustering algorithm. The proposed initialization
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method can be easily parallellized to speedup the initialization phase. Based on
the experiments, SSE can be occasionally even smaller for the proposed method
compared to the k times repeated full K-means++. Overall, especially for larger
values of k, the method provides very similar results compared to the full data
approach. In our future work, targeting at big data applications, integration of
dimension reduction to the initialization and the search phase is to be studied
to reduce the data volume in iterative relocation algorithms even further.
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