
Initialization of Big Data Clustering using
Distributionally Balanced Folding

Joonas Hämäläinen and Tommi Kärkkäinen

Department of Mathematical Information Technology
P.O. Box 35, 40014 University of Jyväskylä - Finland

Abstract. Use of distributionally balanced folding to speed up the ini-
tialization phase of K-means++ clustering method, targeting for big data
applications, is proposed and tested. The approach is first described and
then experimented, by focusing on the effects of the sampling method
when the number of folds created is varied. In the tests, quality of the
final clustering results were assessed and scalability of a distributed im-
plementation was demonstrated. The experiments support the viability of
the proposed approach.

1 Introduction

Iterative relocation clustering algorithms are known to be sensitive to the initial
placement of the prototypes. Actually the twofold aim of clustering, to divide
data into groups where observations within a group are more similar to each
other than observations in other groups [1], is approached in the well-known
algorithms, most prominently in the classical K-means++ [2, 1], by using the
two main steps: i) initial location of K separate prototypes, ii) local refinement
(search) of the initial prototypes to get the final solution. Due to variations
of step i), it is known that this kind of algorithms do not guarantee unique
clustering result or convergence to the global minimum of the clustering error
(e.g., [1, 3, 4]).

The final clustering result can be improved by using some other than the
random strategy for the initialization [5]. Chen et al. [6] argue that in the high-
dimensional space data are inherently sparse. This is due to the well-known curse
of dimensionality [7]. For example, the random samples tend to concentrate on
the corners of a hypercube and the distance between each pair of observations
becomes almost the same for a wide variety of data distributions. Chen et al.
[6] conclude that, for small data sets, the method by Bradley and Fayyad [8],
where the original data set is first splitted into smaller subsets which themselves
are clustered, yielded to the best clustering results. In general, one agrees that
the initial prototypes should be as far from each other as possible (without
being outliers) [9, 1]. Lately, the K-means++ algorithm [10], where the random
initialization is based on a density function favoring distinct prototypes, has
become the most popular variant to initialize the K-means-type of algorithms.

Sampling is the basic approach to reduce the number of observations in statis-
tics. It has a natural role in big data applications to cope with data volume,
although one of the characteristics of big data [11] is precisely the lack of stable
distribution, especially with high veracity and velocity. But the way sampling

587

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

is done matters, and this issue has mostly been considered in relation to the
well-known cross-validation, CV (see [12, 13] and articles therein). More pre-
cisely, the Distribution Optimally Balanced Stratified CV, DOB-SCV, has been
evaluated as an appropriate sampling method for large pool of datasets to ensure
good approximation of data density in the distinct folds created.

An approach where folding is applied with the K-means++ address the
special nature of a high-dimensional data by separating the observations more
clearly. This is combined with the good initialization strategies as mentioned
above: splitting of data and the distinct initial locations. According to our
knowledge, such techniques and in particular the DOB-SCV algorithm, has not
been previously suggested or tested in the big data clustering context. This is the
main goal of the paper, whose structure is as follows: In Section 2, we describe
the clustering approach and in Section 3 provide results from computational
experiments. The paper is shortly concluded in Section 4.

2 The Method

LetX be the given set of observations. In the initialization of the K-means++ al-
gorithm [10], one prototype is first selected at random from X. Then the rest

K−1 prototypes are selected fromX with probability d(x)
2
/
∑

x∈X d(x)
2
, where

d(x) is the smallest distance to a prototype that was already selected. Hence,
with high probability, one obtains a set of clearly distinct initial prototypes.

The DOB-SCV, as proposed in [12] (see [13] for the actual algorithm), was
targeted to create folds (disjoint subsets of data) for the cross-validation. Strat-
ification means that the folds are created classwise, or approximating the whole
data distribution if no labelling is available.

The basic strategy to create k folds is, interestingly, opposite to clustering:
select a random observation from class j, add it to the first fold and then add its
k−1 nearest class neighbors to different folds without replacement. This process
is then repeated until all the observations within class j are assigned to folds.
These steps are applied to all classes. As a result, in addition to the classical
stratification of approximating the class sizes, also class densities are preserved
in the folds. Our approach here is to use this approach to speed up the initial
search of distant prototypes in the K-means++ algorithm. From preliminary
tests that we have made with the available K-means implementations on the
popular Hadoop platform, we have noticed that the nondistributed initialization,
especially for the K-means++ implementations, takes most of the computing
time.

The proposed method is formalized in Algorithm 1. We let DOB-SCV to
form k distjoint folds {Xi}ki=1 from the data X. The initial selection of distinct
prototypes in K-means++ is then done in the folds where the best initial solution
by means of the overall clustering (least-squares) error is selected to initialize
the actual search (cf. [8]). Steps 1-2 in Algorithm 1 can be easily parallelized by
distributing folds to workers and using Single Program Multiple Data (SPMD)
model so that each worker processes its local fold. Communication between

588

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

workers can be done with Message Passing Interface (MPI). Same folds and
workers can also be applied in the local refinement step of the K-means algorithm
in parallel using SPMD model and MPI, see [14].

3 Experimental results

Our first goal of the experiments is to compare how the initialization method
affects to the clustering results in comparison to the whole data K-means++ ini-
tialization. Secondly, we test the scalability of the proposed approach when the
number of folds is varied, by using SPMD implementation of Algorithm 1. As
reference, we used the implementation [15] for K-means++. Matlab Distributed
Computing Toolbox SPMD and Message passing functions were used for the
parallel implementation. All the tests were performed in Matlab 8.3.0 (R2014a)
environment. For the scalability tests, we used the Taito supercluster at IT
Center for Science in Finland. Cluster resources were utilized via Matlab Dis-
tributed Computing Server (MDCS). The tests were run in the parallel partition
with Sandy Bridge nodes having two eight-core Intel E5-2670 2.6 GHz processors
with 256 GB RAM (16 GB per core).

Quality experiments were run with 5 data sets: S-sets [16] and USPS database
[17]. S-sets consist of four real-valued 2-dimensional synthetic data sets gener-
ated from 15 gaussian distributions with known centers. Each S-set consists of
5,000 vectors. The overlappings of clusters increase from S1 to S4. The USPS is
a well-known benchmark of handwritten digit dataset with 9,298 16×16 images
and labels provided. This set consists of 10 classes. The number of clusters K
was fixed for S-sets to 15 and for USPS dataset to 10. For all datasets, the
variables were min-max scaled into [−1, 1].

We ran Algorithm 1 with varying the number of the folds k between 2 −
50 for the even numbers. For each k, K-means++ run was repeated k times
and the minimum sum-of-squared-errors, SSE, was used to select as the final,
reference clustering result. Tests were repeated 10 times for the both methods
with DOB-SCV refolding in Algorithm 1. Comparison of the clustering results
for K-means++ and Algorithm 1 was performed by analysing SSE and the
pairwise prototype distances. For the latter measure, we calculated the sum of
the smallest pairwise Euclidean distances, in such a way that each prototype
was linked to the corresponding prototype only once. These were then averaged

Algorithm 1 K-means++ with folding initialization

Input: Folds {Xi}ki=1 from DOB-SCV, number of clusters K.
Output: Set of prototypes C = {cj}Kj=1.

1: For each fold Xi do K-means++ clustering initialization.
2: For each set of prototypes Ci from a fold, calculate clustering error for the

whole data.
3: Select the set of prototypes Cm with the smallest clustering error.
4: Do the K-means search starting from Cm.

589

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

number of folds

di
st

an
ce

 o
f p

ro
to

ty
pe

s

s1
s2
s3
s4
USPS

Fig. 1: Normalized prototype distances between Algorithm 1 and K-means++.

over 10 testruns for each k and normalized by dividing the result with the sum
of the Euclidean norms of ground truth prototypes. For the USPS dataset, the
ground truth prototypes were calculated as the class means.

In Fig. 1, the behavior of the normalized prototype distances are depicted.
In general, all the results are very close to each other. We also observe that
the prototypes become more similar between the methods when k increases.
This might be due to the increase of the accuracy for both methods, more
precisely, the number of i) the initial prototypes for Algorithm 1 and ii) the
final prototypes for K-means++.

In Fig. 2, the SSE difference is the average SSE for the K-means++ which
is subtracted from the average SSE for Algorithm 1. The SSE differences were
again normalized, this time with the SSE for the ground truth prototypes. Al-

0 5 10 15 20 25 30 35 40 45 50

−0.2

−0.1

0

0.1

0.2

0.3

0.4

number of folds

S
S

E
 d

iff
er

en
ce

s1
s2
s3
s4
USPS

Fig. 2: Normalized SSE difference between Algorithm 1 and K-means++.

590

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

5 10 15 20 25 30
0

100

200

300

400

500

number of workers

tim
e

in
 s

ec
on

ds

total time
initialization time
search time

(a)

1 10 100
0

500

1000

1500

2000

2500

filesize GB

tim
e

in
 s

ec
on

ds

initialization time
search time

(b)

Fig. 3: Initialization and search phases wall times for parallellized Algorithm 1.

gorithm 1 occasionally gives smaller errors than the repeated, full K-means++,
especially for the smaller values of k. A strong variation of the SSE difference for
the dataset S1 is most likely a consequence of higher probability to get stuck in
a local minimum. For USPS, the SSE difference is close to zero for all the values
of k, which indicates that the accuracy of Algorithm 1 is improved when the
volume of the problem is increased. This is desirable in big data applications.

For the scalability tests with the implementation as described above, the
MNIST database [18] was used. MNIST is another classical benchmark with
handwritten digits that consists of 70,000 28×28 images with labels for 10 classes.
In the first experiment, the number of workers were varied as 1, 2, 4, 8, 16 and
32. We also increased the data volume to demonstrate the behaviour: each
data fold was copied 3 times for both observation and variable direction. Hence,
the total data size was approximately 210,000×2,352. The wall clock time in
Algorithm 1 for the initialization (Steps 1-3) and for the search phase (Step 4)
was measured, again repeating the folding 10 times and averaging the wall clock
times. Note that total time for the original (full data) K-means++ is given
with one worker in Algorithm 1. As we can see from Fig. 3a, initialization time
was reduced rapidly up to 8 workers until the time in communication starts to
dominate, especially for the search phase.

In the second experiment, the number of workers was fixed to 100 and data
size was varied approximately as, again using MNIST for copying, 210,000×2,352
(1 GB), 630,000×7,056 (10 GB) and 2,030,000×22,736 (100 GB). Algorithm 1
was ran once for each data and wall times were measured similarly as in the first
experiment. Results are shown in Fig. 3b, which demonstrates that proposed
method, indeed, scales for big data.

4 Conclusions

We proposed and tested distributionally optimal folding as an initialization
method for the K-means++ clustering algorithm. The proposed initialization

591

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

method can be easily parallellized to speedup the initialization phase. Based on
the experiments, SSE can be occasionally even smaller for the proposed method
compared to the k times repeated full K-means++. Overall, especially for larger
values of k, the method provides very similar results compared to the full data
approach. In our future work, targeting at big data applications, integration of
dimension reduction to the initialization and the search phase is to be studied
to reduce the data volume in iterative relocation algorithms even further.

References

[1] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,
31(8):651–666, 2010.

[2] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

[3] M. Emre Celebi, H. A. Kingravi, and P. A. Vela. A comparative study of efficient initial-
ization methods for the k-means clustering algorithm. Expert Systems with Applications,
2012.

[4] M. Saarela and T. Kärkkäinen. Analyzing student performance using sparse data of core
bachelor courses. Journal of Educational Data Mining, 7(1):3–32, 2015.

[5] L. Bai, J. Liang, and C. Dang. An initialization method to simultaneously find initial
cluster centers and the number of clusters for clustering categorical data. Knowledge-
Based Systems, 24(6):785–795, 2011.

[6] L. Chen, L. Chen, Q. Jiang, B. Wang, and L. Shi. An initialization method for clustering
high-dimensional data. In Database Technology and Applications, 2009 First Interna-
tional Workshop on, pages 444–447. IEEE, 2009.

[7] M. Verleysen and D. François. The Curse of Dimensionality in Data Mining. Analysis,
3512:758 – 770, 2005.

[8] P. S. Bradley and U. M. Fayyad. Refining initial points for k-means clustering. In ICML,
volume 98, pages 91–99, 1998.

[9] S. S. Khan and A. Ahmad. Cluster center initialization algorithm for k-modes clustering.
Expert Systems with Applications, 2013.

[10] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Pro-
ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035. Society for Industrial and Applied Mathematics, 2007.

[11] B. Hammer, H. He, and T. Martinetz. Learning and modeling big data. 22th European
Symposium on Artificial Neural Networks (ESANN2014), (April):23–25, 2014.

[12] J. G. Moreno-Torres, J. A. Sáez, and F. Herrera. Study on the impact of partition-
induced dataset shift on k-fold cross-validation. IEEE Transactions on Neural Networks
and Learning Systems, 23(8):1304–1312, 2012.

[13] T. Kärkkäinen. On cross-validation for MLP model evaluation. In Structural, Syntactic,
and Statistical Pattern Recognition, Lecture Notes in Computer Science (8621), pages
291–300. Springer-Verlag, 2014.

[14] I. S. Dhillon and D. S. Modha. A data-clustering algorithm on distributed memory
multiprocessors. LargeScale Parallel Data Mining, 1759(802):245–260, 1999.

[15] L. Sorber. k-means++ - File Exchange - MATLAB Central, 2010.

[16] P. Fränti and O. Virmajoki. Iterative shrinking method for clustering problems. Pattern
Recognition, 39(5):761–775, 2006.

[17] J. J. Hull. A database for handwritten text recognition research. IEEE Trans. Pattern
Anal. Mach. Intell., 16(5):550–554, May 1994.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2323, 1998.

592

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

