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Abstract. A novel reinforcement learning algorithm that deals with
both continuous state and action spaces is proposed. Domain knowledge
requirements are kept minimal by using non-linear estimators and since
the algorithm does not need prior trajectories or known goal states. The
new actor-critic algorithm is on-policy, offline and model-free. It considers
discrete time, stationary policies, and maximizes the discounted sum of
rewards. Experimental results on two common environments, showing the
good performance of the proposed algorithm, are presented.

1 Introduction

Reinforcement learning (RL) [1] is a framework for solving sequential de-
cision problems where an agent interacts with its environment and adapts its
policy based on a scalar reward signal. RL agents can autonomously learn dif-
ficult tasks, like navigating a maze or playing a video game [2]. While the basic
setting of RL is now well established, a number of researchers have been study-
ing variants where environments with continuous spaces lead to more and more
practical problems.

Thus, the purpose of this article is to present an RL algorithm respecting two
main requirements : 1) dealing with continuous state and action spaces in order
to address more realistic problems, 2) the knowledge added by the designer to
the agent should be minimal, to allow the agent to acquire progressively its own
representations in a developmental robotics perspective [3].

Firstly, the common RL background of classical algorithms and their lim-
itations are described. Secondly, the main algorithm of this paper is exposed
with an experimental comparison on multiple environments.

2 Background

2.1 Reinforcement learning

RL is a framework that models sequential decision problems, in which an agent
learns to take better decisions while interacting with its environment. Once an
agent performs an action, the state changes and the agent receives a scalar value,
which can be null, called reward, that encodes information about the quality
of the actual transition. The goal of the agent is to maximize its long-term
expected total reward.

∗The data has been numerically analyzed with the free software package GNU Octave [15].
Experiments presented in this paper were carried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.grid5000.fr).
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The underlying formalism of RL is that ofMarkov Decision Processes (MDP).
An MDP is formally defined as a tuple 〈S,A, T,R〉 where S is a set of states,
A a set of actions, T : S × A × S → [0, 1] are transition probabilities between
states (T (s, a, s′) = p(s′|a, s) is the probability of reaching state s′ from state
s after executing action a) and R : S × A → R is a reward signal. A pol-
icy π : S × A → [0, 1] encodes how the agent will behave (the probability to
take an action in a given state). An optimal policy π∗ maximizes the expected
discounted reward, that is :

π∗ = argmax
π

J(π) = argmax
π

E

[

∞
∑

t=0

γt ×R(st, πt(st))
]

(1)

where t denotes a time step and 0 < γ < 1 is a discount factor. In the RL setting,
one tries to learn an optimal policy when the model, T and R, is unknown. Such
a setting is considered in this paper.

2.2 Dealing with continuous state space

When the space S is continuous, classical value-function based RL methods
like Least-Squares Temporal Difference (LSTD) [4] rely on an estimation of
Q : S × A → R, the (sequential) values of actions in each state, or V : S → R

the value of each state.

Qπ(s, a) = Eπ

[

∞
∑

k=0

γkrt+k+1

∣

∣

∣
st = s, at = a

]

(2)

This estimation is usually a linear combination of provided basis functions,
that must be carefully defined by an expert. Their nature and number limits
the expressivity of the learned function. It also impedes the agent’s capacity to
develop its own representations. In order to minimize the knowledge brought by
experts (requirement 2), the use of non-linear functions (like neural networks)
will be explored as they have a greater expressiveness range and avoid the a
priori definition of basis functions.

2.3 Dealing with continuous action space

Critic only : Critic-only methods derive a policy directly from the value func-
tion :

π(s) =M(Q, s,A) = argmax
a∈A

Q(s, a) (3)

where the function M can be the argmax operator, Boltzmann soft max, etc.
Several algorithms [1] have been designed with different update rules : Q-
Learning, Sarsa, LSTD, etc. Among these, Fitted Q Iteration (FQI) [5] is
particularly interesting as it uses non-linear neural networks, is data efficient
and takes advantage of the Rprop [6, 7] backpropagation algorithm.

The main issue with critic-only methods is that they are very difficult to
apply to continuous action spaces. The argmax operator cannot be used and

672

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



optimizing the Q function, a linear combination of non-linear basis functions,
is a complex task.

Actor-only : On the other side, it is possible to define a parametric policy πθ
without value function [8]. The goal is to find the best parameters θ according to
the cost function J(πθ) from (1) by exploring the finite-dimensional parameter
space Θ. Evolutionary algorithms like Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [9] or gradient descent are common optimization tools. The
major drawbacks of actor-only methods are the high variability of the cost J
and, for gradient-based methods, the plateau effect and local minima that can
lead to poor policies [10, 11].

Actor Critic : Actor-critic algorithms [11] try to combine the advantage of
both previous methods. The critic learns the value function to reduce the
variability of the approximation of J and the actor learns the policy allowing
the use of continuous actions. Continuous Actor Critic Learning Automaton
(CACLA) is a successful actor-critic algorithm [12] that uses neural networks
for both the critic and the actor. However, it is an online algorithm, as such is
not data efficient as every experienced interaction is only used once.

3 Neural Fitted Actor-Critic

Neural Fitted Actor-Critic (NFAC) is a novel actor-critic algorithm whose
roots lie in both CACLA and Q-Fitted Iteration. It is an offline actor-critic
algorithm that can re-use data and deal with continuous actions. It proceeds
in two steps summarized in Figure 1 : 1) given the current policy π, it samples
and collects interaction data into Dπ, 2) improves the critic approximation and
actor policy with Dπ.

Interaction data collection Dπ is made of several tuple of (st, ut, at, rt+1, st+1).
For a state st, the actor provides the current best action ut, which is slightly
altered in an exploration action at (sometimes equals to ut), which leads to a
new state st+1 and reward rt+1.

Neural network estimation The actor and the critic are implemented using
multi-layer neural networks. Their update phases which are detailed below
make use of Rprop back-propagation algorithm [6, 7] which avoids the definition
of learning rates.

3.1 Critic update

The critic’s update relies on several supervised learning iterations as done in
FQI. At each iteration k, a learning base {(st, vk,t)} of (S×R)|Dπ| is built from
Dπ using the current approximation of Vk. Each state st of Dπ is associated a
target vk,t which is either rt+1 + γVk(st+1) or rt+1 when st+1 is a goal state or
absorbing state. Thus Vk+1 is computed as follows :

Vk+1 = argmin
V ∈Fc

∑

st∈Dπ

[

V (st)− vk,t
]2

(4)
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Fc is the search space of the critic : a subset of learnable functions (for instance
a multi-layer perceptrons). The learning base must be rebuilt at each iteration
since the targets {vk,t} to learn Vk+1 are dependent on Vk. Unlike FQI which
is off-policy, and because of the actor-critic setting, V is here an on-policy
evaluation of the current actor. This implies that Dπ must be rebuilt after each
modification of the actor.

3.2 Actor update

The actor update modifies the policy in order to reinforce exploratory actions
at that do better than the current policy actions ut. The actor update relies
on the temporal difference error δt =

(

rt+1 + γVk(st+1)
) − V (st). Since δt

depends on the approximation of V , the actor update is accomplished before
the critic update. Like CACLA algorithm, the update is performed towards
the exploratory action at only when δt > 0. However, the process is not online
but done according to Dπ. A unique database S × A is enough : there is no
incremental process as was required with the critic because there isn’t a self-
dependency in the update formula :

π̂∗ = argmin
π∈Fa

∑

(st,ut,at)∈Dπ

{
(

π(st)− at
)2
, if δt > 0

(

π(st)− ut
)2
, otherwise

(5)

Notice that an exploitation case, where at is equals to ut, could also result
in a policy update. Whereas CACLA is online, and can only reinforce an ex-
ploration action, here the offline setting of NFAC allows modifying more deeply
the policy by trying to reproduce this exploratory action.

1) interactions

2) a. actor update

2) b. critic update

Environment

u

Agent

s, r

a ∼ π

Dπ

δ
V0

{st, at}

{st, ut}

> 0

≤ 0

πRprop

{st, vk,t}

Vk Vk+1

Rprop

repeat

Fig. 1: Flow diagram of NFAC algorithm.

4 Experimental Setup

NFAC and CACLA are compared in two continuous environments : Acrobot
[13] and Cartpole [14]. Acrobot (double swing-up) is an under actuated arm of
two-link. The first joint cannot exert a torque where the second can. It always
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begins in the same position (straight down). The reward function is defined as
1) +1 if the goal is reached, 2) normalized max height of end effector if 500
steps are reached, 3) 0 otherwise.

Cartpole or inverted pendulum is also made of two joints. The first joint is a
pivot point between the cart and the pole, where torques cannot be applied. The
other joint controls the horizontal movement of the cart. The reward function
is defined as 1) -1 when the pole touches the ground 2) +1 otherwise.

Simulations have been done with the Open Dynamics Engine (ODE) [15]
with the following parameters (soft erp : 0.05, soft cfm : 0.95) :

Mass Gravity Torque Time Step
Units g m · s−2 N s
Acrobot 127, 127 9.81 [−0.125; 0.125] 0.01
Cartpole 85, 38 9.81 [−5; 5] 0.01

Fig. 2: Median and quartile of the best registered performance in Acrobot (lower
better) and Cartpole (higher better) environment during RL learning.

As seen in the Figure 2, NFAC has better performance than CACLA. In
acrobot, 75% of NFAC agents reach their goal after only 151 episodes where
CACLA agents need 544 episodes. The median shows that the quality of the
policies found by NFAC are better. After 1000 episodes, 75 % of NFAC agents
can reach the goal after only 313 steps versus 453 steps for CACLA.

In cartpole, 25% of NFAC agents can preserve the goal during 500 steps
after 623 episodes versus 1419 episodes for CACLA. The median of NFAC is
better than CACLA during the first episodes then converge after 2200 episodes.

Statistics have been made over 150 different runs after meta-parameters
optimization for each algorithms (the number of hidden units for the policy is
the same : 5). ε-greedy policies are used with acrobot, and Gaussian policies
with cartpole. In some environments CACLA has shown better than CMA-ES
and Natural Actor-Critic [16].
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5 Conclusions and further work

NFAC is an actor-critic algorithm that considers continuous spaces, using
non-linear estimators for both the actor and the critic. It is inspired by CACLA
and FQI. Unlike FQI, NFAC can be used in environment with continuous ac-
tions. Additionally, conducted experiments showed that NFAC performs better
than CACLA with fewer meta-parameters. To further improve NFAC, data
collected in previous episodes should be re-used, for instance by using an im-
portance sampling algorithm where the difficulty lies in identifying pertinent
data. This algorithm is also a first step towards deep reinforcement learning
with continuous action spaces, since it would be able to use neural networks.
Additionally, it could be used in a developmental robotic perspective since it
requires very little predefined knowledge.
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