
Deep Neural Network Analysis of Go Games:

Which Stones Motivate a Move?

Thomas Burwick and Luke Ewig

Frankfurt Institute for Advanced Studies, Goethe University Frankfurt
Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany

Abstract. Recently, deep learning was used to construct deep convolu-
tion network models for move prediction in Go. Here, we develop methods
to analyze the inner workings of the resulting deep architectures. Our
example network is learned and tested using a database of over 83,000 ex-
pert games with over 17 million moves. We present ways of visualizing the
learned features (“shapes”) and a method to derive aspects of the moti-
vation behind the expert’s moves. The discussed methods are inspired by
recent progress made in constructing saliency maps for image classification.

1 Introduction

The game of Go is of ancient Asian origin and is a board game of unparalleled
complexity. Due to this complexity it serves as a classical challenge for studying
artificial intelligence. An obvious goal in this context is the generation of a
computer Go system that uses methods which are not brute force but akin to
methods used by human players. A related goal is to construct a system that
learns from a database of expert games to predict the next move in such games.
Recently, remarkable progress has been achieved in this direction by using deep
neural network learning [1, 2]. Here, we use such learning methods to obtain
a deep architecture from a database of over 83,000 expert games with over 17
million moves (section 2) similar to [1]. We then analyze the inner workings of the
resulting deep architecture by adapting methods which have been developed for
deep convolutional image classification [3, 4]. We demonstrate how to visualize
and understand learned features of Go positions (section 3) and develop a method
to determine the relevance of stones in a current position, thereby revealing
aspects of the expert’s motivations for her next move (section 4).

2 Move predictor from Deep Learning

The complexity of the game is related to the vast number of its possible courses.
Its underlying rules, however, are simple. Two players alternatively place black
and white stones on the board, starting with black. The stones are placed on
the intersection of 19× 19 lines; see fig. 1 for examples of resulting intermediate
positions. The stones are not moved, they either remain at their position until
the end of the game or are removed if they turn “dead”. A set of neighboring
stones (where neighboring refers to left or right, above or below) forms a “chain”
that turns dead if none of the neighboring positions is empty; see fig. 2, panels
A to C, for examples. The goal of the game is to occupy and surround more

147

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

A B

Fig. 1: Visualization of the relevances ρpred of stones for a predicted move. (A)
and (B) show the 19 x 19 Go board position examples that are discussed in
the text. The predicted moves (indicated with the filled squares) agree with the
actual moves (empty squares). As defined in section 4, the predicition-relevances
ρpred(m) of the stones at positions m for the respective moves are highlighted
red (ρpred(m) > 0) and blue (ρpred(m) < 0). A stronger intensity of theses
colors indicates a larger magnitude of the relevance. (For non-colored prints:
the darkest red regions with (A) three stones and (B) four stones are marked by
the triangles, the other backgrounds are blue or light red.)

territory than the opponent and the game ends if both players “pass”, that is,
when they refrain from setting further stones.

For the network architecture we follow the recent work as described in [1],
using an input layer, four hidden layers and one output layer, where the output
units give as prediction the probability of the next move by a softmax function.
For the input layer, we use F0 = 3 feature maps with (19 + P0) × (19 + P0)
units, the first for the white (black) stones if the next move is white (black), the
second for the black (white) stones (with values 1 whenever a stone is at the
corresponding position and 0 otherwise). The board is extended with P0/2 = 3
lines on each side, realizing “padding” so that the 7 × 7 × 3 filters between the
input layer and layer 1 produce a 19 × 19 output in layer 1. For the black
and white input planes, the additional components are set to zero. The third
input plane describes the boundary with 0s everywhere, except for 1s at the
4 · (19 + 1) = 80 positions that surround the 19× 19 board positions.

For the convolutional hidden layers � = 1, ..., 4, we use F� feature maps with
F1 = 48 and F2 = F3 = F4 = 32. These have the filter sizes 5 × 5 × F�−1.
Correspondingly, the zero-padded feature maps for � = 1, 2, 3 have size (19 +
P�) × (19 + P�) with P� = 4, assuring that the feature maps in the next layer
(before padding) have size 19× 19. The connections from the final hidden layer
(� = 4) to the output layer (� = L = 5) are not convolutional but fully connected.

148

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

A

D

C

F

a

E

B

Fig. 2: (A) The white stone has only the one liberty at the marked position.
Therefore, Black may capture the white stone by setting at this position and
leaving no liberty of the white stone; the resulting configuration in (B) is denoted
as “diamond” shape and is generally considered to be of great tactical value. (C)
Adjacent stones (see section 2) form a chain that can only survive or be captured
as a whole. Here, the chain of white stones has only the marked liberty and if
Black places a stone there, Black may take the four white stones. (D and E)
The four white stones form the diamond shape. Due to the value of this shape,
a frequent next step of the black player is to attack this configuration by placing
a stone at the marked position, implementing the threat to destroy the white
diamond shape through capturing one of the white stones with a move as in (A)
and (B). (F) This configuration corresponds to the position in the lower right
corner of fig. 3 and the full-board position shown in fig. 1B. The move that would
be a diamond-attacking move like the ones in (D) end (E) would be to place the
black stone at position a. Here, however, the additional stones imply another
motivation that lets the network’s prediction (and the actual move) place the
next black stone at the marked position as discussed in section 4.

We trained the network with 83,581 games, obtained from the GoGoD data-
base1, resulting in 17,297,161 moves. We applied the backpropagation algorithm
where 88% of the moves were used for training to predict the next moves, 4% for
validation, and 8% for testing the resulting network; see [1] for details on how a
similar learning process is organized. Our resulting network predicts the expert
moves correctly in 35% of the test cases. The expert move is among the first
three of the predicted moves (that is, the ones with the highest probability) in
55% of the cases. In 64% of the cases it is among the first five.

3 Visualizing and understanding the learned features

The learning process generates filters that represent certain features. In this
section, we introduce a method that allows to visualize and understand the
meaning of these feature by relating them to characteristic positional “shapes”.

1Website: gogodonline.co.uk

149

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Let the values of feature map f� in layer �, � = 1, .., 4, be given by

yn�f� = g
(

xn�f�
)

with xn�f� = b�f� +
∑

f�−1

∑

m

{W (�−1)→�}f�−1n
f�m

ym(�−1)f�−1
, (1)

where g(x) = x if x ≥ 0 and g(x) = 0 if x < 0. The index f� = 1, ..., F� indicates
the feature maps and n is a two-dimensional index that describes the 19 × 19
board positions. For the positions m we assume a wider range that includes
the additional positions resulting from padding as described in section 2. The
layer � − 1 = 0 is identified with the input. Each feature map f� in layer � is
generated with a filter that processes the values of the foregoing layer through
the W components. The convolutional character of the filters may be expressed
through:

{W (�−1)→�}f�−1n
f�m

=: {W ′(�−1)→�}f�−1

f�(n−m) ,

where “n − m” stands for a two-dimensional difference. The b in eq. 1 are
biases. For image classification, ways of visualizing the learned features have
been proposed in [3, 4]. We now use a combination of these methods, adapted
to the requirements of the Go problem, to demonstrate how features represented
by a filter W ′ may be visualized and thereby related to characteristic shapes.

As an example, we consider a feature f� of layer � = 2 that may be understood
with respect to the situation illustrated in fig. 2, panels D and E. Following [3],
we display the top-9 inputs that generate the strongest responses for the selected
filter; see fig. 3. The representation of the feature by showing the inputs that give
the top-9 largest responses is, however, not enough to understand what feature
(or shape) is actually represented by the filter. Therefore, in the following we
also introduce a procedure that visualizes the relevances of the stones. This
procedure is inspired by the construction of saliency maps in the context of
image classification [4].

The feature map f0 = 1 (f0 = 2) of the input, � = 0, describes the positions
m of black (white) stones through values ym01 = 1 (ym02 = 1), while the other
components vanish. Define the feature-relevance ρ feat of the stone at position
m for the feature map value yn�f� through removing this stone by changing the
corresponding value to ym01 = 0 (ym02 = 0) and computing the resulting change
(ρ feat)

n
�f�

(m) = Δyn�f�(m) = yn�f�(y
m
01 = 1) − yn�f�(y

m
01 = 0) for a black stone

and analogously for a white stone. These values of ρ feat(m) are then illustrated
trough red (ρ feat(m) > 0) and blue (ρfeat(m) < 0) colors at the positions m (see
the caption of fig. 3), where intensity corresponds to the magnitude of ρ feat.

Applying this procedure to compute the relevances of the stones for the
feature under consideration in fig. 3 reveals that this feature encodes a “white
diamond” configuration, formed by the four white stones of high relevance for
this feature.

4 Which stones are relevant for the next move?

Applying the procedure that we described in the foregoing section to the output
layer, we may determine the relevance of stones for the predicted move as follows.

150

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Fig. 3: As an example, we consider a feature given by a filter from layer 2
that is particularly easy to understand with respect to a black attack on the
white diamond shape as illustrated in fig. 2, panels D and E. Following [3], the
figure shows the top-9 inputs from the test set that generate the strongest filter
responses. Notice that the size of the filters (see section 2) implies that each
unit of layer 2 receives input from 11 × 11 board positions, eventually reaching
outside the board’s boundary if the receptive field includes a part of the padding
frame. The colors, constructed with the method presented in section 3, allow to
visualize the essence of the considered feature through displaying the feature-
relevances ρ feat defined in section 3: red (blue) indicates that the filter response
decreases (increases) if the stone is removed. This relates the feature to the
white diamond shape. (Hint for non-colored prints: only the four stones of the
white diamond shape show dark red, other backgrounds are blue or light red.)

Let us denote the output values as zn where n is the two-dimensional index that
indicates the 19× 19 board positions. The probabilities for the next black move
at one of the empty board positions n is given by the softmax function:

pn =
zn
Z

with Z =
∑

n′
zn′ and zn = exp

(

xnLfL

)

, (2)

151

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

where the definition of the xnLfL
is obtained from eq. 1 with � = L.

We now define the prediction-relevance ρpred in analogy to the feature-
relevance ρ feat of the foregoing section as the effect of removing a stone on the
probabilities pn. The resulting changes ρpred = Δpn may then be color coded
as illustrated for the examples in fig. 1 with red (blue) for ρpred > 0 (ρpred < 0)
and color intensity indicating the magnitude of ρpred.

To understand the relation of the feature- and the prediction-relevance, con-
sider again the top-9 filter responses in fig. 3 and concentrate on the upper left
(case A) and the lower right (case B) positions. The corresponding board po-
sitions are shown in fig. 1A and 1B. For both cases, as indicated by fig. 3, the
white diamond shape is “recognized”, expressed through a large filter response,
but only in case A does it imply a diamond-shape attacking black move (as for
most of the other situations in fig. 3). What could motivate the different move in
case B? (Of course, the notion of “motivation” has several connotations. Here,
we want to restrict its meaning to the described relevance measure.)

The prediction-relevance ρpred shown in fig. 1A confirms that indeed the
white diamond shape is relevant for the attacking move. In contrast, a different
motivation shows up in case B; see fig. 1B. There, it is not the white diamond
that is relevant for the predicted (and actual) move but instead a shape that
is shown in fig. 2F. The black move at the marked position serves to “cut” a
possible connection between the lower white stone and the diamond.

Note also that the negative relevances ρpred of the white stones on the left
board side in fig. 1A indicate that there are tactical necessities in this region
that compete in relevance with the diamond-attacking move. Therefore, the
prediction of the latter increases when removing white stones on the left side
as this lowers the necessity to act there. The analog remark applies to the
star-marked stones in fig. 2F that have a negative relevance in fig. 1B.

References

[1] Christopher Clark and Amos Storkey. Training deep convolutional neural
networks to play go. In Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pages 1766–1774, 2015.

[2] Chris J. Maddison, Aja Huang, Ilya Sutskever, and David Silver. Move Eval-
uation in Go Using Deep Convolutional Neural Networks. In International
Conference on Learning Representations. 2015.

[3] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. In Computer Vision–ECCV 2014, pages 818–833. Springer,
2014.

[4] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional net-
works: Visualising image classification models and saliency maps. In Proceed-
ings of the International Conference on Learning Representations (ICLR),
2014.

152

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

