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Abstract. Recently, deep learning was used to construct deep convolu-
tion network models for move prediction in Go. Here, we develop methods
to analyze the inner workings of the resulting deep architectures. Our
example network is learned and tested using a database of over 83,000 ex-
pert games with over 17 million moves. We present ways of visualizing the
learned features (“shapes”) and a method to derive aspects of the moti-
vation behind the expert’s moves. The discussed methods are inspired by
recent progress made in constructing saliency maps for image classification.

1 Introduction

The game of Go is of ancient Asian origin and is a board game of unparalleled
complexity. Due to this complexity it serves as a classical challenge for studying
artificial intelligence. An obvious goal in this context is the generation of a
computer Go system that uses methods which are not brute force but akin to
methods used by human players. A related goal is to construct a system that
learns from a database of expert games to predict the next move in such games.
Recently, remarkable progress has been achieved in this direction by using deep
neural network learning [1, 2]. Here, we use such learning methods to obtain
a deep architecture from a database of over 83,000 expert games with over 17
million moves (section 2) similar to [1]. We then analyze the inner workings of the
resulting deep architecture by adapting methods which have been developed for
deep convolutional image classification [3, 4]. We demonstrate how to visualize
and understand learned features of Go positions (section 3) and develop a method
to determine the relevance of stones in a current position, thereby revealing
aspects of the expert’s motivations for her next move (section 4).

2 Move predictor from Deep Learning

The complexity of the game is related to the vast number of its possible courses.
Its underlying rules, however, are simple. Two players alternatively place black
and white stones on the board, starting with black. The stones are placed on
the intersection of 19× 19 lines; see fig. 1 for examples of resulting intermediate
positions. The stones are not moved, they either remain at their position until
the end of the game or are removed if they turn “dead”. A set of neighboring
stones (where neighboring refers to left or right, above or below) forms a “chain”
that turns dead if none of the neighboring positions is empty; see fig. 2, panels
A to C, for examples. The goal of the game is to occupy and surround more
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Fig. 1: Visualization of the relevances ρpred of stones for a predicted move. (A)
and (B) show the 19 x 19 Go board position examples that are discussed in
the text. The predicted moves (indicated with the filled squares) agree with the
actual moves (empty squares). As defined in section 4, the predicition-relevances
ρpred(m) of the stones at positions m for the respective moves are highlighted
red (ρpred(m) > 0) and blue (ρpred(m) < 0). A stronger intensity of theses
colors indicates a larger magnitude of the relevance. (For non-colored prints:
the darkest red regions with (A) three stones and (B) four stones are marked by
the triangles, the other backgrounds are blue or light red.)

territory than the opponent and the game ends if both players “pass”, that is,
when they refrain from setting further stones.

For the network architecture we follow the recent work as described in [1],
using an input layer, four hidden layers and one output layer, where the output
units give as prediction the probability of the next move by a softmax function.
For the input layer, we use F0 = 3 feature maps with (19 + P0) × (19 + P0)
units, the first for the white (black) stones if the next move is white (black), the
second for the black (white) stones (with values 1 whenever a stone is at the
corresponding position and 0 otherwise). The board is extended with P0/2 = 3
lines on each side, realizing “padding” so that the 7 × 7 × 3 filters between the
input layer and layer 1 produce a 19 × 19 output in layer 1. For the black
and white input planes, the additional components are set to zero. The third
input plane describes the boundary with 0s everywhere, except for 1s at the
4 · (19 + 1) = 80 positions that surround the 19× 19 board positions.

For the convolutional hidden layers � = 1, ..., 4, we use F� feature maps with
F1 = 48 and F2 = F3 = F4 = 32. These have the filter sizes 5 × 5 × F�−1.
Correspondingly, the zero-padded feature maps for � = 1, 2, 3 have size (19 +
P�) × (19 + P�) with P� = 4, assuring that the feature maps in the next layer
(before padding) have size 19× 19. The connections from the final hidden layer
(� = 4) to the output layer (� = L = 5) are not convolutional but fully connected.
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Fig. 2: (A) The white stone has only the one liberty at the marked position.
Therefore, Black may capture the white stone by setting at this position and
leaving no liberty of the white stone; the resulting configuration in (B) is denoted
as “diamond” shape and is generally considered to be of great tactical value. (C)
Adjacent stones (see section 2) form a chain that can only survive or be captured
as a whole. Here, the chain of white stones has only the marked liberty and if
Black places a stone there, Black may take the four white stones. (D and E)
The four white stones form the diamond shape. Due to the value of this shape,
a frequent next step of the black player is to attack this configuration by placing
a stone at the marked position, implementing the threat to destroy the white
diamond shape through capturing one of the white stones with a move as in (A)
and (B). (F) This configuration corresponds to the position in the lower right
corner of fig. 3 and the full-board position shown in fig. 1B. The move that would
be a diamond-attacking move like the ones in (D) end (E) would be to place the
black stone at position a. Here, however, the additional stones imply another
motivation that lets the network’s prediction (and the actual move) place the
next black stone at the marked position as discussed in section 4.

We trained the network with 83,581 games, obtained from the GoGoD data-
base1, resulting in 17,297,161 moves. We applied the backpropagation algorithm
where 88% of the moves were used for training to predict the next moves, 4% for
validation, and 8% for testing the resulting network; see [1] for details on how a
similar learning process is organized. Our resulting network predicts the expert
moves correctly in 35% of the test cases. The expert move is among the first
three of the predicted moves (that is, the ones with the highest probability) in
55% of the cases. In 64% of the cases it is among the first five.

3 Visualizing and understanding the learned features

The learning process generates filters that represent certain features. In this
section, we introduce a method that allows to visualize and understand the
meaning of these feature by relating them to characteristic positional “shapes”.

1Website: gogodonline.co.uk
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Let the values of feature map f� in layer �, � = 1, .., 4, be given by

yn�f� = g
(

xn�f�
)

with xn�f� = b�f� +
∑

f�−1

∑

m

{W (�−1)→�}f�−1n
f�m

ym(�−1)f�−1
, (1)

where g(x) = x if x ≥ 0 and g(x) = 0 if x < 0. The index f� = 1, ..., F� indicates
the feature maps and n is a two-dimensional index that describes the 19 × 19
board positions. For the positions m we assume a wider range that includes
the additional positions resulting from padding as described in section 2. The
layer � − 1 = 0 is identified with the input. Each feature map f� in layer � is
generated with a filter that processes the values of the foregoing layer through
the W components. The convolutional character of the filters may be expressed
through:

{W (�−1)→�}f�−1n
f�m

=: {W ′(�−1)→�}f�−1

f�(n−m) ,

where “n − m” stands for a two-dimensional difference. The b in eq. 1 are
biases. For image classification, ways of visualizing the learned features have
been proposed in [3, 4]. We now use a combination of these methods, adapted
to the requirements of the Go problem, to demonstrate how features represented
by a filter W ′ may be visualized and thereby related to characteristic shapes.

As an example, we consider a feature f� of layer � = 2 that may be understood
with respect to the situation illustrated in fig. 2, panels D and E. Following [3],
we display the top-9 inputs that generate the strongest responses for the selected
filter; see fig. 3. The representation of the feature by showing the inputs that give
the top-9 largest responses is, however, not enough to understand what feature
(or shape) is actually represented by the filter. Therefore, in the following we
also introduce a procedure that visualizes the relevances of the stones. This
procedure is inspired by the construction of saliency maps in the context of
image classification [4].

The feature map f0 = 1 (f0 = 2) of the input, � = 0, describes the positions
m of black (white) stones through values ym01 = 1 (ym02 = 1), while the other
components vanish. Define the feature-relevance ρ feat of the stone at position
m for the feature map value yn�f� through removing this stone by changing the
corresponding value to ym01 = 0 (ym02 = 0) and computing the resulting change
(ρ feat)

n
�f�

(m) = Δyn�f�(m) = yn�f�(y
m
01 = 1) − yn�f�(y

m
01 = 0) for a black stone

and analogously for a white stone. These values of ρ feat(m) are then illustrated
trough red (ρ feat(m) > 0) and blue (ρfeat(m) < 0) colors at the positions m (see
the caption of fig. 3), where intensity corresponds to the magnitude of ρ feat.

Applying this procedure to compute the relevances of the stones for the
feature under consideration in fig. 3 reveals that this feature encodes a “white
diamond” configuration, formed by the four white stones of high relevance for
this feature.

4 Which stones are relevant for the next move?

Applying the procedure that we described in the foregoing section to the output
layer, we may determine the relevance of stones for the predicted move as follows.
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Fig. 3: As an example, we consider a feature given by a filter from layer 2
that is particularly easy to understand with respect to a black attack on the
white diamond shape as illustrated in fig. 2, panels D and E. Following [3], the
figure shows the top-9 inputs from the test set that generate the strongest filter
responses. Notice that the size of the filters (see section 2) implies that each
unit of layer 2 receives input from 11 × 11 board positions, eventually reaching
outside the board’s boundary if the receptive field includes a part of the padding
frame. The colors, constructed with the method presented in section 3, allow to
visualize the essence of the considered feature through displaying the feature-
relevances ρ feat defined in section 3: red (blue) indicates that the filter response
decreases (increases) if the stone is removed. This relates the feature to the
white diamond shape. (Hint for non-colored prints: only the four stones of the
white diamond shape show dark red, other backgrounds are blue or light red.)

Let us denote the output values as zn where n is the two-dimensional index that
indicates the 19× 19 board positions. The probabilities for the next black move
at one of the empty board positions n is given by the softmax function:

pn =
zn
Z

with Z =
∑

n′
zn′ and zn = exp

(

xnLfL

)

, (2)
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where the definition of the xnLfL
is obtained from eq. 1 with � = L.

We now define the prediction-relevance ρpred in analogy to the feature-
relevance ρ feat of the foregoing section as the effect of removing a stone on the
probabilities pn. The resulting changes ρpred = Δpn may then be color coded
as illustrated for the examples in fig. 1 with red (blue) for ρpred > 0 (ρpred < 0)
and color intensity indicating the magnitude of ρpred.

To understand the relation of the feature- and the prediction-relevance, con-
sider again the top-9 filter responses in fig. 3 and concentrate on the upper left
(case A) and the lower right (case B) positions. The corresponding board po-
sitions are shown in fig. 1A and 1B. For both cases, as indicated by fig. 3, the
white diamond shape is “recognized”, expressed through a large filter response,
but only in case A does it imply a diamond-shape attacking black move (as for
most of the other situations in fig. 3). What could motivate the different move in
case B? (Of course, the notion of “motivation” has several connotations. Here,
we want to restrict its meaning to the described relevance measure.)

The prediction-relevance ρpred shown in fig. 1A confirms that indeed the
white diamond shape is relevant for the attacking move. In contrast, a different
motivation shows up in case B; see fig. 1B. There, it is not the white diamond
that is relevant for the predicted (and actual) move but instead a shape that
is shown in fig. 2F. The black move at the marked position serves to “cut” a
possible connection between the lower white stone and the diamond.

Note also that the negative relevances ρpred of the white stones on the left
board side in fig. 1A indicate that there are tactical necessities in this region
that compete in relevance with the diamond-attacking move. Therefore, the
prediction of the latter increases when removing white stones on the left side
as this lowers the necessity to act there. The analog remark applies to the
star-marked stones in fig. 2F that have a negative relevance in fig. 1B.
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