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Abstract. Many of the current scientific advances in the life sciences have
their origin in the intensive use of data for knowledge discovery. In no area
this is so clear as in bioinformatics, led by technological breakthroughs in
data acquisition technologies. It has been argued that bioinformatics could
quickly become the field of research generating the largest data reposi-
tories, beating other data-intensive areas such as high-energy physics or
astroinformatics. Over the last decade, deep learning has become a dis-
ruptive advance in machine learning, giving new live to the long-standing
connectionist paradigm in artificial intelligence. Deep learning methods
are ideally suited to large-scale data and, therefore, they should be ideally
suited to knowledge discovery in bioinformatics and biomedicine at large.
In this brief paper, we review key aspects of the application of deep learn-
ing in bioinformatics and medicine, drawing from the themes covered by
the contributions to an ESANN 2018 special session devoted to this topic.

1 Introduction

Deep Learning (DL) [1] has become an increasingly popular Machine Learning
(ML) approach in the last decade, as shown in Fig. 1. One of the main reasons
for its success stems from its internal representation in the form of high-level
features, allowing the modelling of difficult problems, and a smart initialization
of some other deep structures. Moreover, staging the difficult task of efficient
feature selection by using multiple layers has been crucial in solving extremely
difficult problems of image classification [2, 3, 4], or Natural Language Processing
(NLP) [5, 6, 7] by means of Convolutional Neural Networks (CNNs) and Deep
Recurrent Neural Networks (RNN), respectively. The success achieved in such
complicated problems has generated a great interest not only in the academic
community but also in industry, with many private companies involved in the
development of commercial products based on DL [8, 9].

Although CNNs and recurrent networks have already produced significant
advances in biomedical imaging and biomedical signal processing [8], the impact
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Fig. 1: Evolution on the number of papers published on DL topics with respect to
those on DL in Biolnformatics (Source: query on abstracts keywords on Scopus
data; date: February 15¢, 2018)

of DL in Bioinformatics is still limited. This is possibly related to some of the
challenges that many bioinformatics data sets represent, such as insufficient and
unbalanced data, or challenges related to the area of application itself, such as
the lack a straightforward interpretation of deep models. This special session
aims to bring together some of the most recent advances in DL as applied to
bioinformatics and (bio)medicine.

The contents of this tutorial are outlined as follows: Section 2 deals with the
problem of structured biomedical data. Section 3 reviews the contribution of
DL to image processing in medicine. Section 4 provides a glimpse of a key issue
when dealing with DL approaches in the clinical field, namely, intepretability.
Finally, Section 5 gives some insights on future trends and challenges derived
from the papers submitted to the session.

2 Deep Learning of structured biomedical data

The term structured data denotes a whole selection of data types encoding dif-
ferent forms of relational information, ranging from sequences to more complex
and general classes of graphs. Structured data can be seen as representing com-
pound information made of atomic entities, i.e. the labels of the nodes/vertices
of the structures, linked by relationships, denoted by the edges between the
nodes (possibly complemented by edge labels). As such, structured data place
emphasis on evaluating and interpreting information “in context” rather than
following the classical i.i.d. assumption, where the context is defined by the set
of nodes an atomic piece of information is linked to.

Structured data arise naturally as the result of many biological, physical and
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chemical processes. Sequences are the simplest form of structured data and are a
natural representation, for instance, for nucleotide compounds (e.g. DNA, RNA)
and for physiological signals (e.g. ECG, EEG, MEG data). Trees, instead, are
widely used to represent cell phylogeny and clonal diversity, while more general
classes of graphs find wide application to represent proteomic and metabolomic
interactions, protein structures as well as chemical compounds.

The field of ML for structured data processing has a long consolidated history
dating back to the sixties for the first approach to sequential data, namely the
Hidden Markov Model (HMM) [10]. Later, in the nineties, the scientific commu-
nity started tackling more complex structures, with works proposing recursive
approaches for acyclic graph processing [11, 12], later followed by a number of
approaches tackling more general classes of graphs with cycles [13, 14].

The first and most popular applications of DL to biomedicine concern the
processing of sequential data. CNN models have found wide application to ge-
nomics, in particular for the prediction of protein binding sites such as in the
DeepBind [15] and DeepSEA [16] methods, where it has also been proposed as a
method to visualize the effect of wild-type mutation on binding site prediction,
contributing to the interpretability of the learned model. Despite their limita-
tion in treating only fixed length subsequences, CNNs have quickly become the
reference DL model for genomic studies: a recent review of the main CNN ap-
proaches in the field can be found in [17]. RNNs, such as the Long Short Term
Memory (LSTM), have found less application in genomics despite their ability
in modeling variable length sequences, mostly due to a widespread belief of the
biomedical community, which considers them difficult to train [18]. An attempt
to bring the LSTM model into the biomedical community is put forward in [19],
where an approach to learn interpretable features from an LSTM trained on
real-world clinical time-series is proposed. Along the same line, [20] proposed
the use of a LSTM to classify 128 diagnoses from multivariate clinical time series
collected in an intensive care unit (ICU). Use of more parsimonious RNN models
is discussed in [21] for scoring stress levels from heart-rate information. On the
unsupervised learning side, stacked denoising autoencoders have been proposed
to learn informative encodings on noisy ECG time series [22]. The ubiquitous
Generative Adversarial Networks (GANs) have very recently been used [23] for
the generation of molecules encoded as character sequences.

Several papers of this ESANN 2018 special session deal with DL approaches
for biomedical sequences. In [24], it is proposed a framework integrating deep
autoencoders with kernel methods to learn effective encodings of multivariate
clinical time series in presence of missing information. A deep RNN approach
is discussed in [25] to diagnose Parkinson’s disease from spiral drawing tests.
CNNs are used in [26] to classify sleep stages from EEG recordings, using a
fixed window approach splitting time series into subsequences of 30 seconds of
electrical activity.

The long wave of the DL revolution is now approaching and rediscovering
the processing of more complex and expressive forms of structured data, in par-
ticular as regards cheminformatics and drug discovery. Again, CNNs are among
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the most popular approaches here: [27] proposed the first attempt to process
molecular data within a CNN using circular fingerprint encodings imported from
the chemistry literature. A proper generalization of the concept of convolution
from images to graphs of varying dimensionality has been proposed in [28], with
application to the characterization of chemical compounds. Graph convolutions
are used in [29] together with an attentional model based on LSTM to predict
molecule properties with a one-shot learning approach. Very recently, a DL
model, based on a similar encoding to the one in [14], has been proposed in [30]
for the processing of large scale networks of proteomics and metabolomics inter-
actions for predicting new drug-disease associations in drug repurposing. The
special session contributes to this flourishing topic with a paper [31] discussing
a deep graph kernel for disease gene prioritization in bioinformatics.

3 Deep Learning for medical image processing

The popularity of DL has exponentially risen especially due to its capability to
process images independently from human intervention. This includes inherent
robustness to variations in position, rotation, scale, perspective and occlusion.
These traits have consequently appeared as particularly valuable in the medical
sector. The amount of image data available for analysis keeps increasing with
the modernization and constant use of imaging devices. Time-saving decision
support in this area was achieved by ML techniques before the arrival of DL, but
with a different supplementary human cost, i.e. that of highlighting the regions
of interest in the images, of handcrafting the relevant features for the diagnosis
and of labelling each image. This has proved to be a turning point for DL, as the
accurate provider of both image processing and image interpretation. Lacking
the need for expert handcrafted features by automatically learning the optimal
attributes from the available images [32] and benefiting from large amounts
of available data, DL has therefore successfully entered the realm of medical
imaging. Its applications range from landmark detection and tissue segmentation
to diagnosis and prognosis [33].

The main DL approach to image analysis is the CNN. Its special convo-
lutional layers are able to detect the relevant features gradually, from those
low-level to the high-level structures, by inspecting small portions of the train-
ing images. Following the independent feature discovery, the image is labelled
according to the given task. CNN modelling may target images from histopathol-
ogy [34, 35], CT scans [36, 37], or MRI [38], to name a few. Stacked autoencoders
can also be employed for automatic feature extraction, such as in [39] for MRI
imaging and in [40] for CT and ultrasound images.

The success of DL for medical imaging can be appreciated in the constant
presence of the topic at conferences specialized in biomedical computing and
in journals dealing with medical image processing, as well as in the advent of
companies using these methods in the area (e.g. Enlitic, Arterys, or Lunit [41]).

Shifting now from the brighter side of the DL potential for image mining in
medicine, a big problem that the paradigm faces in this real-world complex field
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of application, as compared to its use for general images, must be acknowledged.
The actual scarcity of labelled medical images makes it harder for the approach to
perform well, leading to overfitting and hard parametrization. Current solutions
include data geometric augmentation, transfer learning and fine-tuning [33, 42]
from general image data sets such as ImageNet or preferably [43] from those
emerging in the medical domain (e.g. on Kaggle), as well as GANs [44].
Several papers in the current special session cover some of the key aspects of
the application of DL for image processing in medicine and public health. As the
field of application is concerned, two of them target medical imaging tasks from
CT and HP and one deals with recognising pollen from microscopic images for
allergy and asthma prevention in medicine. As for the DL architectures involved,
two CNN (of which one is a GAN) and one autoencoder emulator are employed
to solve the problems. In [45], the authors propose an expansion of an initially
low number of available 2D lung CT scans through a GAN methodology. In
[46], a NMF approach for learning a reduced feature representation in a fashion
similar to an autoencoder is described for the processing of histopathological
colorectal cancer slides. Finally, from the public health perspective, a CNN for
pollen recognition from a collection of microscopic images is employed in [47].

4 Interpretable DL models in biomedicine and bioinfor-
matics

Over the last decades, data have become central to the life sciences. Biomedicine
and, perhaps more expressively, bioinformatics are perfect examples of that. The
introduction of computerized and networked digital systems and the impressive
advances in non-invasive data acquition technologies are putting data at the
heart of these disciplines.

Data are hoped to become the key to the discovery of new knowledge at
all physiological scales, opening the doors to hitherto unaccessible medical ad-
vances. Such transformation from data to knowledge is a natural goal for ML.
To be accepted in biomedicine and bioinformatics, and very especially in medical
practice, ML-based approaches must be trusted. One of the main challenges ML
faces to achieve such desired trustworthiness is that of becoming explainable and
interpretable [48, 49].

The relevance of this challenge is heightened by a pressing societal issue: the
implementation of the new European Union directive for General Data Protec-
tion Regulation (GDPR). It is to be enforced throughout 2018 with minimum
variation between European countries. Its Article 22, concerning “Automated
individual decision-making, including profiling”, mandates a right to explana-
tion of all decisions made by automated or artificially intelligent algorithmic
systems [50]. The GDPR directive makes model interpretability a core concern
in biomedical decison making; it directly involves ML and should particularly
concern those aiming to see DL being used in medical practice, beyond basic
research.

Another of the reasons for explainability and interpretability to have become,
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of late, contentious and hotly debated issues in ML is, precisely, the new life given
to connectionism in the form of DL. In general, DL approaches are extreme
cases of black box models. Being such a success story for ML, DL models’
lack of interpretability has become a pressing concern in the area, reflected by
recent literature. A concern of no easy solution, given the difficulty of making
these often extremely complex systems become somehow transparent. In [51],
an adversarial training scheme was recently proposed, where model neurons “are
endowed with human-interpretable concepts” and interpretable representations
can trace outcomes back to influential neurons, providing an explanation of how
models make their predictions. Also recently, interpretability criteria based on
analysis of deep networks in the information plane [52] were described.

Lack of transparency has indeed been argued to be one of the main barriers
to the acceptance and adoption in medicine of ML methods in general and DL
methods in particular [43]. This view is shared by Che and co-workers; in [53],
they propose gradient boosting decision trees to extract interpretable knowledge
from a trained deep network. In related work [54], deep models are regularized
so that their class-probability predictions can be modeled with minimum loss
by decision trees with few nodes. Interpretation from these trees is far more
tractable and intuitive than from the original models.

An example of how to deal with interpretability in DL can be found in the
ESANN 2018 special session covered in this tutorial. In [55], an extension of
interpretable mimic learning that teaches reasonably simple and interpretable
models so as to mimic predictions of complex DL models without missing in the
performance is introduced. It focuses on problems of ordinal classification and
illustrates the capabilities of the model with a problem of ordinal response to
cancer treatment.

5 Some future trends and challenges

The application of DL methods to problems in biomedicine and bioinformatics
is a many-faceted problem. At this point in time and in a brief tutorial such as
this, it would be impossible to provide a comprehesive view of the future trends
in the area and the various important challenges faced by such applications in
real-world scenarios.

Some future trends, though, have been outlined for biomedicine in [56] and
for bioinformatics in [8]. For biomedicine, DNNs are quoted to be of potential
benefit to areas as varied as semantic linking, biomarker development, drug
discovery (structural analysis and hypothesis formulation through DNN abstract
learned representations analysis), clinical recommendations and transcriptomic
data analysis . For bioinformatics, investigating proper ways to encode raw and
multi-modal data forms, instead of human-processed features, and learn suitable
features from those multi-modal or raw forms is seen as a future challenge for
DNNs.

Note that the previous comments do not cover medical applications in clinical
settings and healthcare. In these, and as reported in the previous sections,
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explainability and interpretability are major challenges for DL. Despite extensive
research into the interpretation of neural networks in clinical settings dating back
several decades [57] and extending to more recent work [58], we are only now
weaving the first strands of methods capable of translating the complex inner
workings of deep architectures. This means that this is possibly both a future
strong research trend and far-from-trivial challenge. The latter is exemplified by
a recent study by Google Brain researchers [59], who show the surprising result
of the lack of sensitivity of local model explanations to deep neural network
(DNN) parameter values. The study concludes that “the architecture of DNN
is a strong prior on the input, and with random initialization, is able to capture
low-level input [image] structure”.

As mentioned, another likely future trend and definite challenge for DL is
the coherent integration of multi-modal data [60]. A case in multi-omics data
integration is presented in one of the studies in the ESANN 2018 special session
covered by this tutorial [61]. It delivers a novel super-layered neural network
architecture named cross-modal neural network. Interestingly, it is meant to
perform well in scenarios with a limited number of training examples available
(something not uncommon in multi-modal biomedical problems).

A final glimpse of the future is provided in [62], where a reinforcement learn-
ing brain-dynamics-model-free approach to control response properties of biolog-
ical neural networks is described. Beyond this proof-of-concept, such approach
could have an enormous impact on the study of degenerative brain diseases.
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