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Abstract.

Association studies have been widely used to discover the genetic basis of

complex phenotypes. However, standard univariate tests, and their alter-

natives, do not fully exploit the dependences between genetic markers. In

this paper, we propose Sylva, a hybrid approach in which a random forest

framework based on embedded trees benefits from a probabilistic graphical

model. The latter is a collection of tree-shaped Bayesian networks with la-

tent variables. We extensively compared Sylva and T-Trees, on simulated

and real data. Sylva outperforms the already highly performant T-Trees,

in a vast majority of cases.

1 Introduction

Genome-wide association studies (GWASs) rely on genetic markers, to help re-
veal the genetic architecture of complex phenotypes, such as diseases. In GWASs,
hundred thousands of genetic markers, distributed throughout the genome, are
observed for a population (e.g., plants, animals), to detect a dependence (i.e.,
an association) between some markers and the phenotype of interest. In this
paper, we are interested in binary phenotypes observed from a cohort of affected
subjects and a cohort of unaffected subjects, with a total population size in the
order of a few thousands.

In the literature, several classification methods have been applied on GWAS
data. These methods encompass logistic and penalized regressions, support vec-
tor machines, neural networks and random forests (RFs). A random forest (RF)
[1] is a set of classification trees grown from bootstrap samples of observations.
At each node, a random subset of K predictors is used to determine the best
discriminative split with respect to a binary variable of interest denoted c here-
after. In a GWAS context, the learning set input to an RF consists of D, a
matrix describing the p variables (i.e., the genetic markers) of set V , for each of
n observations (i.e., subjects). RFs applied to GWAS data produce a ranking
of the markers, by decreasing importances [2].

A limitation of RFs in GWASs is the lack of exploitation of linkage desequilib-
rium, defined as the non-random association of the variants of genetic markers,
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in a given population. In this context, it is appealing to consider latent variables
that capture the dependences between the variables, to build the trees of a RF
based on these variables. In this line, Botta and collaborators recently intro-
duced the T-Trees (Trees inside Trees) model [3]. In T-Trees, the block-based
modeling of dependences within variables is naive. It was therefore question-
able whether (and to which extent) the high performances obtained for T-Trees
could still be increased with a more refined model of dependences. In this paper,
we propose Sylva, an innovative hybrid method combining T-Trees with FLTM
(Forest of Latent Tree Model), a model derived from our former works [4].

The remainder of this paper is organized as follows. Section 2 briefly reviews
the features of T-Trees and FLTM essential to the design of the hybrid method.
The algorithms behind the hybrid approach are described in Section 3. Section
4 presents the evaluation datasets and experimental protocol, together with the
results of our comparative studies of T-Trees and Sylva on simulated and real
data.

2 Combining two forest models

In the GWAS context, the variables (i.e., markers) are ordered along the genome.
Linkage disequilibrium translates into the existence of local dependences within
markers. To cope with these dependences, T-Trees slices the data into blocks
of contiguous variables, of equal sizes. As will be explained later on, this data
dimensionality reduction process is the key to further infer numerical latent
variables.

This paradigm shift from standard RFs to T-Trees requires an adaptation
to compute optimal splits for such latent variables. In the standard RF learn-
ing algorithm, for any variable v selected at random when growing a tree, all
univariate split functions (v ≤ θvr ; v > θvr) are examined across the value do-
main Domv = {θvr}r=1,...,mv

. Thus can be determined the best discriminative
split for this variable, to partition the current learning set. The univariate split
functions used in standard RFs are replaced by non-linear multivariate split
functions of contiguous variables in T-Trees. We will further detail how such a
multivariate split function is itself connected to an embedded tree.

In the Sylva approach, we transform the original space of observed variables
into a smaller space of discrete latent variables provided through FLTM mod-
eling. A FLTM is a collection of latent tree models. A latent tree model is a
tree-structured Bayesian network (BN) with observed discrete variables at leaf
nodes, and discrete latent variables at internal nodes. The root is associated
with a marginal distribution, and each other node is associated with a distri-
bution of the corresponding variable given its parent. Learning a latent tree is
challenging in the case of high dimensional data. There exist O(23p

2

) candidate
structures for a latent tree derived from p observed variables [5]. In high dimen-
sional settings, learning a latent tree can only be efficiently addressed through
iterative ascending clustering of variables [6]. In this category, the FLTM learn-
ing algorithm allows diversity for the cardinalities of latent variables and does
not impose binary structure for trees, while still offering scalability.
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3 Description of the hybrid approach

In this section, we describe the two main algorithms behind the Sylva approach.

3.1 The T-Trees-based framework

At the upper level, Sylva drives the construction of a RF as follows:
1. Initialize the RF, Ftt, to the empty set.
2. Construct Di, a bootstrap version of initial dataset D; grow tree Ti from

learning set Di via function growTree and add Ti to Ftt.

The process stops when T trees have been built.

Function growTree expands tree Ti through a recursive scheme that will
operate on smaller and smaller subsets of dataset Di:

1. If a recursion termination case is detected (minimum sample size, maxi-
mum number of nodes, node purity, constance of variables), create a leaf
node T labeled by the distribution of the binary variable of interest over
observation sample Di, and return T .

2. Otherwise,
2.1. Select at random K discrete latent variables from the FLTM model.
2.2. For each discrete latent variable ℓ (corresponding to some cluster cℓ

of variables in V ), infer a numerical latent variable ℓ′ by expanding
an Extra-Tree Ecℓ. Ecℓ is grown from the learning set Di,ℓ, obtained
as the projection of the matrix Di (of second dimension |V |) onto
its |cℓ | columns related to ℓ. Compute OS(ℓ′), the optimal split for
numerical latent variable ℓ′.

2.3. Identify the best split across all K numerical latent variables:
S∗ = argmax

OS(ℓ′
j
),j=1,...,K

discriminativeScore (OS(ℓ′j)).

2.4. Based on best split S∗, partition Di into Di,1 and Di,2, and grow
subtrees T1 and T2 from the former observation subsamples.

2.5. Create node T labeled with S∗, graft T1 and T2 on T , and return
T .

Growing an Extra-Tree is less complex than growing a tree in a standard RF:
the split is selected at random for each of the Ke variables selected at random
for some current node.

We now focus on 2.2, to explain how a numerical latent variable ℓ′ is inferred.
In the T-Trees framework, Extra-Trees are used to infer the novel numerical
latent variables necessary to build the non-linear multivariate split functions:

1. The current learning set Di,ℓ is distributed into Ecℓ’s leaves; each leaf is
then labeled with the probability that the binary variable of interest be
equal to, say, 0, over the observation sample related to the leaf.

2. The value domain Dom(ℓ′) of the novel numerical latent variable ℓ′ is
defined: for each observation o in Di,ℓ, ℓ

′(o) is assigned the label of the
leaf reached by o, and therefore Dom(ℓ′) = {ℓ′(o), o ∈ Di,ℓ}.

Thus can be computed the optimal non-linear split OS(ℓ′) mentioned in step
2.2.
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3.2 Provision of precursor latent variables by FLTM

In the FLTM learning algorithm, clusters of pairwise dependent variables are
subsumed through discrete latent variables, in an ascending hierarchical process.
Full advantage is taken from the probabilistic graphical model framework, to
validate these latent variables. The learning process is depicted as follows:

1. Initialize W , the working set of variables, to the whole set of variables in
V , and initialize the forest Flm to the collection of |V | univariate BNs.

2. Given some specified clustering method, partition W into non-overlapping
clusters. The metrics used is the mutual information measure.

3. For each non-singleton cluster cℓ, try to infer a latent variable ℓ. For this
purpose:
3.1. Build a latent class model (LCM), that is a latent tree rooted in ℓ,

and whose leaves are the variables in cluster cℓ.

3.2. Learn the distributions associated to the nodes of this LCM using the
Expectation-Maximization (EM) algorithm.

3.3. Assess the quality of ℓ through a criterion C , based on mutual infor-
mation and entropy between ℓ and any child variable.

3.4. If C is greater than a specified threshold τ , (i) in Flm’s structure,
connect novel node ℓ to its child nodes as indicated by the LCM,
(ii) replace the current marginal distribution of each child variable
v, P(v), with the conditional probability P(v/ℓ) computed with EM,
and (iii) update W by discarding the child variables and including ℓ.
Otherwise, keep the variables in cℓ as isolated nodes in Flm.

3.5. Repeat steps 2 and 3 until no latent variable can be inferred or a
single cluster is built from W .

4 Experimental study

We compared the performances of T-Trees and Sylva on simulated and real
datasets. The FLTM learning algorithm relies on ProBT, a C++ library ded-
icated to BNs (http://www.probayes.com/fr/recherche/probt/). The current
implementation allows to choose between adapted versions of CAST, DBSCAN
and the Louvain method, to cluster variables.

4.1 Experimental protocol

We used a widely-used software program, HAPGEN, to simulate realistic geno-
typic data harboring a dependence between one of the simulated variables and
the simulated phenotype. We simulated 27 conditions and generated 100 repli-
cate datasets (20,000 markers, 2,000 affected and 2,000 controls) under each con-
dition. Performance is measured as the percentage of simulated causal markers
identified among the variables with the highest importances, over all 100 repli-
cates related to the same condition. We successively computed this percentage
for the top 25, top 50, top 100, top 200 and top 1000 variables showing the
highest importances.
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Fig. 1: Comparison of performances for T-Trees and Sylva/DBSCAN, under
27 simulated conditions (GM × GRR × MAF). GM: genetic disease model
(additive, dominant, recessive); GRR: genetic relative risk; MAF: minor allele
frequency of the causal marker; S: Sylva approach, T: T-Trees approach.

In complement, we ran T-Trees and Sylva on 161 large-scale real datasets
provided by the Wellcome Trust Case Control Consortium) (http://www.wtccc.
org.uk/). Therein, for each of seven diseases, around 4,500 to 5,000 affected
and unaffected subjects are described for each of the 23 human chromosomes.
Across the chromosomes, the number of markers ranges from 5,754 to 38,867.
We ran Sylva for each of methods CAST, DBSCAN and Louvain. We compared
the discriminative powers of T-Trees and Sylva through their areas under ROC
curves.

4.2 Results

The results on simulations are displayed in figure 1. For the additive and dom-
inant genetic models, we find that Sylva almost always outperforms T-Trees
when small sets of top markers are examined. Then, sooner or later, the dis-
crepancy between the methods diminishes. Besides, we observe a more or less
smooth degradation of the performances as the MAF and GRR decrease. For
the recessive model, the performances are poor for T-Trees and Sylva in all
conditions.

Both methods show comparable (high) AUCs (table 1(A)) on real datasets.
When CAST or DBSCAN is used, over all 161 chomosome-wide datasets, Sylva
slightly outperforms T-Trees in a vast majority of cases (respectively 71.7%
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auc t sc sd sl
min 0.887 0.902 0.890 0.885
max 0.961 0.979 0.972 0.955
avg 0.934 0.946 0.952 0.940

cases for which auc(s) > auc(t)
t vs sc t vs sd t vs sl
71.7% 75.5% 62.3%

diff
min 0.012 0.009 0.005
max 0.037 0.048 0.055
avg 0.021 0.023 0.017

(A) (B)

co-occurrences of auc(s) > auc(t)
over the 161 datasets

t vs sc t vs sd t vs sl p-val χ2

x x x 53.5%
x x 61.6% 2.7e-06
x x 62.3% < 2.2e-16

x x 53.5% 2.0e-04

(C)

Table 1: Comparison of the predictive powers of T-Trees and Sylva on 161 real
datasets. SC: Sylva/CAST, SD: Sylva/DBSCAN; SL: Sylva/Louvain.

and 75.5%); this percentage is 62.3% for the Louvain method (table 1(B)).
First, it was not a foregone result that we could improve the performance of
T-Trees as it was already high. Second, we observe substantial percentages of
co-occurrences for outperformance of Sylva over T-Trees, between any two meth-
ods among CAST, DBSCAN and Louvain (table 1(C)). χ2 tests indicate that
these co-occurrences are statistically significant. This latter result emphasizes
the advantage of combining T-Trees with FLTM, as shown on simulated data.

5 Conclusions and future work

In this paper, we put forward the hybrid approach Sylva, that combines T-Trees
with a refined modeling of dependences between variables. We showed that Sylva
outperforms T-Trees for applications in association genetics, in a vast majority
of cases. Our next work will introduce consensus clustering in FLTM with the
aim of increasing the performance of Sylva. Besides, to apply Sylva on genome
scale, efforts will be spent to increase the scalability of FLTM learning algorithm.
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