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Abstract.

The direct synthesis of continuously spoken speech from neural activity is
envisioned to enable fast and intuitive Brain-Computer Interfaces. Ear-
lier results indicate that intracranial recordings reveal very suitable signal
characteristics for direct synthesis. To map the complex dynamics of neu-
ral activity to spectral representations of speech, Convolutional Neural
Networks (CNNs) can be trained. However, the resulting networks are
hard to interpret and thus provide little opportunity to gain insights on
neural processes underlying speech. Here, we show that CNNs are useful
to reconstruct speech from intracranial recordings of brain activity and
propose an approach to interpret the trained CNNs.

1 Introduction

Brain-Computer Interfaces (BCIs) that continuously decode neural activity into
audible speech could provide a communication means for otherwise mute users
[1]. State-of-the-art BCIs enable users to input words letter-by-letter or to move
a cursor on the screen - at slow speed. A close to real-time decoding of contin-
uously spoken speech would allow for much faster and more intuitive interfaces.
Earlier work indicates that Electrocorticography (ECoG) provides signal prop-
erties that are suitable for the decoding of speech processes from neural data
[2]. Few studies demonstrate reliable decoding of phonemes [3, 4] and continu-
ous speech [5] from ECoG. Recent results give hope that even imagined speech
could be successfully decoded [6, 7, 8]. While the decoding of speech from re-
lated neural signals into the corresponding textual representation enables fast
device control, several speech characteristics that are crucial in spoken commu-
nication are not captured, such as emphasis, rhythm, and prosody. The direct
mapping of neural signals into audible speech would enable users to regain the
full expressive power of speech.

Both continuous speech and ECoG data have complex spatio-temporal dy-
namics indicating that a mapping from one to the other might not be simply
linear. CNNs have recently produced promising results on neural data even with
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limited amounts of training data [9]. Here, we demonstrate that CNNs can be
applied to solve a regression problem, namely to successfully reconstruct spectral
speech features from ECoG data. However, CNNs models are notoriously diffi-
cult to interpret and thus hinder to gaining knowledge. For classification tasks,
activation maximization [10, 11] may provide insights into the trained models
but it cannot be directly applied to the given regression problem. In this paper,
we modified the application of activation maximization to fit it to our regression
problem and thus to investigate and verify the trained network.

2 Material and Methods

2.1 ECoG dataset

We simultaneously recorded ECoG activity and acoustic speech data from 3
participants (1 female) suffering from intractable epilepsy. We asked them to
speak aloud phrases from the Harvard sentences [12] which were aurally and
visually presented to them for 4 seconds. Participants repeated between 50
and 150 phrases. Participants were implanted with different numbers of ECoG
electrodes (participant 1: 18 electrodes, participant 2: 16, participant 3: 68
electrodes) on the left hemisphere covering at least some areas relevant for speech
production. Electrode locations and duration of intracranial monitoring were
purely based on clinical needs. All participants gave written informed consent
and the experiment was approved by the IRB of both Mayo Clinic and Old
Dominion University.

2.2 Signal Preprocessing and Feature Extraction

ECoG data was preprocessed by linear detrending. Additionally an elliptic IIR
notch filter was used to attenuate the first harmonic of the line noise at 120 Hz.
As a meaningful feature, logarithmic broadband gamma (70-170 Hz) power was
extracted and normalized to zero mean and unit variance per channel.

To capture the complex dynamics of neural activity associated with speech
production, we use 9 consecutive intervals of 50 ms (downsampled to 20 Hz)
of broadband gamma activity, which can be interpreted as a two dimensional
spatio-temporal pattern of brain activity. Resulting patterns are of dimension
|electrodes| × 9 and form the input of the CNN architecture to reconstruct the
spectral features of speech.

Acoustic speech data was downsampled to 16 kHz and the spectral features
were calculated in windows of 50 ms with a frameshift of 10 ms. To capture the
speech-relevant spectral dynamics and to reduce the feature dimensionality, we
applied traditional mel-scaling using triangular filter banks to finally extract 40
logarithmic mel-scaled spectral coefficients per frame [13].

2.3 Deep Convolutional Neural Network

As acoustic and neural data were recorded in parallel, the acoustic feature vectors
in terms of mel-scaled spectral coefficients can be aligned to ECoG features.
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Fig. 1: ECoG Gamma activity is arranged to form a 2-dimensional, spatio-
temporal pattern of electrodes × time. This pattern is fed into 4 subsequent
convolutional blocks and a linear output layer to produce the log mel speech
features.

Thus, a CNN can be trained to predict spectral features (spectrogram) from the
spatio-temporal patterns of ECoG activity.

For this regression task we designed a deep CNN inspired by the architecture
of Schirrmeister et al [9]. The convolutional layers are intended to exploit the
coherence between electrode location and temporal progression. Figure 1 illus-
trates our CNN architecture that is applied to reconstruct the spectral speech
features from the neural data. The network consists of four convolutional blocks
followed by a fully-connected layer with a linear activation function as the output
layer to map the ECoG input features to the 40 logarithmic mel-scaled spectral
coefficients. Each convolutional block starts with a convolutional layer followed
by a batch normalization layer. Figure 1 shows the number of feature maps, the
size of the receptive field, and the pooling size for the subsequent subsampling
layer. For the batch normalization (BN) layer we used a constant momentum of
0.9. Non-linearity is introduced by exponential linear units [14]. A convolutional
block ends with a max pooling layer to reduce the dimensionality. Dropout is
applied with a probability of 0.5 after each block.

Network training has been applied in a 5-fold cross-validation to synthesize
a spectrogram of the entire session. We used Adam as the optimizer and trained
for a fixed number of 80 epochs.

2.4 Activation Maximization for Regression Problems

The activation maximization [10, 11] technique identifies the input pattern of a
trained neural network that maximizes the activation of a specific (hidden) unit.
This optimization problem that can be solved by performing gradient ascent in
the input space and by modifying the input sample according to the gradient.
Common applications of activation maximization are input visualizations for
image categories in object recognition, where the class unit activation in the
output layer is maximized [15].
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For the speech regression task, we adapted this idea to enable interpretation
of our CNN. Instead of maximizing the output of a single unit, we minimized
the mean-squared error between the network output for a given input sample
and the mean spectrogram target. Two targets were used for the activation
maximization, speech and silence, i.e. we calculated one mean log mel-scaled
spectrum of segments when the participant was speaking and one mean when
s/he was silent.

Gradient descent is used to move the input sample to a local minimum in
the input space by subtracting the partial error of each input feature in an
iterative manner. To generate input samples for the mean speech and mean
silence spectrogram targets, we used a constant learning rate of 0.01 and a fixed
number of 600 update steps in the gradient descent optimization. Initial input
samples for both target classes comprise the maximum value from each feature
over all training samples.

3 Results

3.1 Speech Reconstruction Results

Fig. 2: Correlation results of the speech synthesis approach using CNN. (a)
Mean Spearman’s rank correlations between original and reconstructed spectro-
grams over all spectral bins for all participants. (b) The correlations over all 40
logarithmic mel-scaled spectral coefficients for participant 3. Whiskers/shaded
areas show standard deviations.

We used Spearman’s rank correlation to compare reconstructed spectrograms
with their original counterpart. Figure 2 (a) shows that mean correlations over
all spectral bins for all 3 participants are significantly better than chance level.
Correlations for participant 3 clearly outperform the other two with a mean
ρ = 0.58, this is most likely due to the larger number of electrodes (68 compared
to 16 and 18, respectively) and the better coverage of brain areas involved in
speech production. Figure 2 (b) examines results for participant 3 in more detail
by looking at rank correlations for each of the 40 logarithmic mel-scaled spectral
coefficients individually. It can be seen that except for the first coefficient, which
contains signal energy, all bins can be reconstructed with high correlations.
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Subsequently to reconstruction, a resulting spectrogram can be synthesized
into an acoustic speech waveform, although phase information is lost [16].

3.2 Interpretation of Trained CNNs

Figure 3 highlights those brain areas for which expected activities strongly differ
between speech segments and silence segments with regards to deviation from
mean normalized broadband gamma-activity, as identified by our modified acti-
vation maximization approach. Figure 3 (a) shows differences for participant 3
in the lower motor cortex, an area which is responsible for facial muscle control
that are involved in articulation. Figure 3 (b) highlights differences for par-
ticipant 1 in the auditory cortex, an area that processes the perception of the
participant’s own voice. As our proposed approach pinpoints brain areas and
associates them to time-aligned speech processes, it facilitates a sanity check to
verify if CNN models learn patterns in accordance to known speech processes
[17], and thus provides a form of validation.

Fig. 3: Activation patterns in terms of one standard deviation of log-gamma
activity identified by our approach. (a) Relevant gamma activity concurrent to
speech production in lower parts of the motor cortex (Participant 3). (b) For
participant 1, most differences in activation can be found in auditory areas for
acoustic processing.

4 Conclusion

The direct synthesis of neural activity into audible speech could provide an
intuitive means of communication and thus help people who do not have a voice.
In this paper, we have shown that convolutional neural networks can be used
to reconstruct spectral features of speech solely from invasively measured brain
activity. The reconstructed speech features can be synthesized into an audible
speech waveform. To interpret the dynamics learned by the CNN models, we
present a modification of the activation maximization approach for regression
tasks. The areas of brain activity indicated by our approach confirm common
theories of speech production.
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