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Abstract. A user’s working memory capacity is a crucial factor for suc-
cessful Human Computer Interaction (HCI). While reliable tests for work-
ing memory capacity are available, they are time-consuming, stressful, and
not well-integrated into HCI applications. This paper presents a classifier
based on Long Short Term Memory networks to exploit sparse temporal
dependencies in behavioural data, collected in a complex, memory-intense
interaction task, to classify working memory capacity. A cognitive user
simulation is introduced to generate additional training data episodes that
follow the behaviour of existing real data. We show that the classifier out-
performs a linear baseline especially for short segments of data.

1 Introduction and Related Work

Humans employ several perceptual, cognitive, and motor capabilities while in-
teracting with computers. However, a key to successful Human Computer In-
teraction (HCI) is working memory (WM) capacity, which is strongly correlated
to general intelligence [1]. WM is relevant to preserve attention and control all
cognitive interactions. Cognitive Load Theory [2] suggests that overloading a
user’s WM leads to deteriorated performance and requires system adaptation.
Due to its high importance in HCI contexts, there exist, on the one hand, many
approaches e.g. [3] aiming at dynamically measuring working memory load by
sensor data. However, such approaches do not estimate general, person-specific
WM capacity. On the other hand, there exist also standard approaches for mea-
suring WM capacity by implementing widely used WM capacity measures (e.g.,
Operation: Memory-Update (MU) and Reading span [4]). For example, in the
MU task, participants memorize a series of numbers in parallel while applying
a sequence of arithmetic operations to them. However, such explicit approaches
for assessing WM capacity are time-consuming, stressful, and not well-integrated
into HCI applications.
WM capacity of a user will be reflected on her or his behaviour while interacting
with a computer. For modeling user behaviour in HCI, Recurrent Neural Net-
works, especially Long Short term Memory (LSTM) networks, have been widely
adopted. Wöllmer [5] introduced an LSTM-based verbal and non-verbal behav-
ior analysis for inferring the spoken content as well as the user’s effective state
from speech and video signals. Baccouche et al. [6] proposed a sequential model
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for human action recognition. Their model works in two steps: first, it learns
spatio-temporal features using the extension of Convolutional Neural Networks
to 3D. Second, a RNN is then trained to classify each sequence considering the
temporal evolution of the learned features for each time-step. Alahi et al. [7] an-
alyzed pedestrians’ trajectories, predicted by LSTM, to demonstrate the motion
behaviour learned by their LSTM model. Putze et al. [8] introduced an LSTM
model to detect memory-based interaction obstacles from behavioural data ob-
served during HCI contexts. However, the obstacle which had been considered is
a memory-loading secondary task that deteriorates the performance of the HCI
main task regardless of individual WM capacity.
In this paper, we present an LSTM model for classifying WM capacity from
behavioral data during HCI. The first contribution is that we exploit behavioral
patterns from input log files of natural HCI situations without using any addi-
tional sensors such as cameras, EEG electrodes etc. The second contribution
is that to deal with limited amounts of available behavioral data, we present
an approach to use a cognitive user simulation to generate additional training
episodes.

2 Data Collection

A user study was designed to gather two types of data from participants: MU
data as reference labels and behavioral data from an HCI task for classification.
The chosen HCI task is a game of Matching Pairs, in which the player reveals
hidden cards, two per round, to find pairs of corresponding cards which are then
removed. Matching Pairs is the model of a task which relies strongly, but not
exclusively, on WM. As differences in WM capacity are more likely to be revealed
when WM demand is high, we added a secondary task of serial addition. During
playing the game, the sequence of selected cards has been recorded.
In total, 24 subjects (16 male, age from 19 to 48) participated in our experiments.
The data collection was approved by the ethics committee of the University of
Bremen. Participants achieved a median MU score of 88% (standard deviation
of 0.17%). This is substantially above the average MU score of 64%1 [4] for
the general population, showing that discrimination of WM capacity will be
challenging due to compressed bandwidth of WM capacities. Participants were
then partitioned into two groups, namely MU+ for participants having scores
greater than median (11 participants) and MU- for participants having scores
less then median (10 participants). Three participants with exactly the median
score were excluded from further analysis.

3 Classification Setup

For estimating WM capacity, we implemented a classifier to predict group as-
signment (MU+ or MU-) based on the recorded behavioral data, represented as

164% is the weighted average of MU scores of three experiments with 110, 114 and 160
participants respectively.
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prefixes of playing sessions of fixed length. Shorter prefixes are preferred as they
allow a faster WM capacity assessment. For this purpose, we compare two classi-
fication models: A sequential neural model based on LSTMs and a static baseline
model based on Linear Discriminant Analysis (LDA). A sequential model of user
behavior is a plausible choice as it is able to capture the context of individual
user behaviours, e.g. whether the user exploits opportunities to reveal pairs, even
if the corresponding cards were revealed long ago. As the number of available
training episodes is very limited (each session yields one episode, either for class
MU+ or class MU-), we need to generate additional training data. While this is a
standard Machine Learning approach for static data (often called oversampling)
using algorithms such as SMOTE [9] or ADASYN [10], it is more challenging
for sequential data: generated samples have to preserve the typical temporal
relationships of the original data, i.e. we cannot simply generate each time slice
independently. Therefore, we use a cognitive user simulation to generate addi-
tional training data. The simulation maintains plausible temporal relationships
between time slices in reference data sequences. In the following subsections, we
describe the user simulation and the classifier setup.

3.1 Cognitive User Simulation

The Cognitive Memory Model [11] (CMM) is a general computational cognitive
model of human memory inspired by the ACT-R theory [12]. The CMM mod-
els the activation and retrieval probabilities of stored items (revealed cards in
our case). The CMM can be used to implement a generative model of playing
Matching Pairs by weighting the need for exploration of unknown cards and for
exploitation of known pairs [13]. The CMM has a number of free parameters,
such as the degree of memory decay, which determine its predictions of memory
performance. Those parameters can be optimized by a genetic optimization al-
gorithm in CMM to best fit the empirical training data. The genetic optimizer
maintains a population of CMM configurations consisting of all free parameters.
The population is initialized randomly and then repeatedly updated according
to the standard operations of genetic optimization, mutation and selection [14].
For selection, we employ similarity metrics to compare a set of generated game
sessions to real game sessions, e.g. the matching-pairs statistic as a similarity
metric counts the number of removed card pairs per turn. A configuration is
then selected more likely if it generates game sessions which are close to the real
data according to the specified similarity metrics. To achieve enough variance in
the training data, we do not pool all available real sessions together to optimize a
global parameter set; instead, we repeat the process for each session individually
and only pool the resulting simulated sessions together to form a richer, more
varied corpus of simulated sessions.

3.2 Classifiers

For modeling sequential behavioural data, we employ an LSTM network. LSTMs
consist of so-called LSTM cells which explicitly store, retain, or forget informa-
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Fig. 1: Mean matching-pairs statistic for MU+ and MU- clusters of real data
and simulated data (Sim). For real data, whiskers show standard deviation.

tion from previous time steps. This approach is chosen to battle the challenge
of vanishing gradient in traditional RNNs. The network for our approach starts
with an LSTM layer with 32 LSTM cells as input layer to handle the train-
ing data sequences. Sequence items are passed consecutively to LSTM cells as
consecutive time steps. The LSTM cells are interconnected where the output
of one cell acts as an additional input to the next cell. Such a specific struc-
ture allows LSTM to store and retain information from previous time steps.
The LSTM layer is followed by a Dropout layer with a rate of 0.5 acting as a
regularization technique that avoids over-fitting by randomly ignoring neurons
during training [15]. Finally, the output layer is a fully connected dense layer
that uses soft-max activation and outputs a binary label. To fit the model, we
perform 500 epochs of Stochastic Gradient Descent with adaptive learning rate,
lr = 0.1

#epoch . The input consists of the ordered sequence of consecutively chosen
cards. Each card is represented by two features: The first one encodes its posi-
tion in the revealing order of motives; the second feature encodes the position
of the card in the corresponding pair. Example: the first revealed card is always
encoded with the feature vector (1,1), If the second revealed card shows the same
motive, it is encoded with the vector (1,2) (second card of the first motive), oth-
erwise with the vector (2,1) (first card of the second motive). The advantage of
this feature representation is that it is invariant to the actual motives but still
captures the temporal relationships within a sequence. In addition to the raw
behavioural data, we manually define statistical features, which are expected to
differ between classes, for enriching the input training data. The following fea-
tures summarize, for a game prefix, how efficient and close-to-optimal a player
performed: number of cards left in the game, number of never revealed cards in
the game, maximum number of times revealing the same card and number of
rounds since game completion (= 0 if game not yet completed). For the LSTM,
we calculate the features incrementally for each time step. After 500 training
epochs on simulated data, we retrain the resulting model with the original 14
real training sessions. The parameters of the CMM are optimized on those real
training sessions as well.
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In contrast to the LSTM model, the LDA model considers a whole game at once.
It only uses the manually defined features as one vector calculated after the end
of the game (prefix). From these features, we train an LDA model (as baseline
model) to classify logged games into MU+ and MU- labels.

4 Evaluation

For evaluation, we randomly split the game sessions into 14 sessions for training
and 6 for testing. Training and testing data are balanced for classes MU+
and MU-. Splitting is done randomly and repeated for 20 splits, the results
are averaged across splits. For each split, we again performed 20 inner iterations
with different randomly generated sets of 14000 training episodes (1000 from each
real training sesion). We test the trained classification model on the testing data
of the respective split and perform analysis for game prefixes of different fixed
lengths. We look at game prefixes of length 5, 7, 10 and 152. As performance
metric, we report classification accuracy, summarized in Figure 2. These results

Fig. 2: Average accuracy (and standard deviation) for LSTM and and LDA
classification models on real data for game prefixes of different lengths.

show that for game prefix lengths 5, 7 and 10 both LDA and LSTM exploit
the richer information of longer game prefixes as accuracy increases with the
length of game prefix. In addition, the results show that LSTM outperforms
LDA for short sequences. The improvement is statistically significant especially
for short game prefixes 5 and 7 (p = 0.001, p = 0.006 and p = 0.1 for 5, 7
and 10 respectively, calculated using a paired t-test on the results of individual
iterations). This can be interpreted as LSTM exploits, besides the incremental
manual features, temporal dependencies in input sequential data, whereas LDA
uses only the static manual features. However, most of the participants finished
the Matching Pairs game before 15 rounds, i.e. raw sequential data contains no
additional information for the last rounds of such games. This explains why
LSTM accuracy decreases for game prefix length of 15. In addition, Figure 1
shows that the difference between MU+ and MU- is largest between 10 and
15 rounds, which makes the discrimination easy for the LDA model. Figure 1

2A game prefix with 5 turns lasts 53 seconds on average.
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also shows a difference between MU+ and MU- behaviours for shorter prefixes,
although standard deviation is high. This implies that partitioning our data
into MU+ and MU- is feasible, even for short sequences, but predicting WM
capacity cannot be immediately done from simple manual features. For these
(most important) cases, the ability of the LSTM model to learn more complex
temporal relationships results in improved performance.
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