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Abstract. The paper introduces a new probabilistic tree encoder based
on a mixture of Bottom-up Hidden Tree Markov Models. The ability
to recognise similar structures in data is experimentally assessed both in
clusterization and classification tasks. The results of these preliminary
experiments suggest that the model can be successfully used to compress
the tree structural and label patterns in a vectorial representation.

1 Introduction

The ability to learn a rich and compact encoding of structured information into a
fixed-size vectorial representation is a key enabler in structured data processing
tasks. One of the most challenging problems in the structured domain is that
of learning a non-isomorphic transduction from non aligned structured data [1].
This defines as a generalization of supervised learning where both inputs and
outputs are structured samples of unconstrained topology. In recent years, var-
ious solutions have been proposed to address the transduction problem in the
sequential domain using deep learning techniques [2]. These solutions are often
based on an encoder -decoder scheme, where the encoder model compresses in-
formation on the full input sequence in a fixed-length representation while the
decoder generates the output sequence by sampling conditioned on the com-
pressed representation produced by the encoder [2]. Related approaches are
being developed also for tree structured data [3], altough none of them tackles
the most general challenge of learning non-isomorph tree transduction.

This paper introduces a new probabilistic tree encoder realized as a mix-
ture of Bottom-up Hidden Tree Markov Models (BHTMMs) [4]. The proposed
approach exploits the mixture assumption to allow the probabilistic model to
better capture varied tree structures with respect to a single or to multiple in-
dependent BHTMMs. We show how the proposed mixture of hidden trees can
be used both for supervised tasks, as in the original BHTMM, as well as for
unsupervised tasks, such as structure clusterization. A preliminary analysis is
also conducted to asses the effectiveness of the model as an encoder, by using it
to generate a compressed representation of an input tree that is then fed to a
neural layer to perform tree classification.
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2 Mixture of BHTMM

Let us consider a dataset D = {x1, . . . ,xN} of N i.i.d. structured samples, where
xn is a labelled and rooted tree with maximum out-degree L. Each vertex u in
the tree is associated with a label xu which we consider with values over the finite
set [1, . . . ,M ]. The goal is to learn a generative model P (xn) which maximise
the likelihood of the dataset D. In this paper, we model the generative process
as mixture of T BHTMM [4].

The BHTMM defines a generative process for a tree xn which goes from the
leaves to the root. As in standard HMM, the process is guided by the evolution
of an hidden dynamics. In particular, an hidden state variable Qu, with values
over a finite set [1, . . . , C], is associated to each node u and emits the associated
label xu. The hidden state variables are linked together, reproducing the same
tree structure of the visible labels. The links go from child nodes to their parent,
assuming that the sate of an hidden node depends on the joint configuration of its
hidden child nodes. Usually, the computation of this state-transition distribution
is impractical, due to the exponential growth of the joint configuration w.r.t. the
maximum out-degree L. The BHTMM factorises such joint state distribution
as a mixture of pairwise child-to-parent transitions: this approximation is called
switching parents (SP) [4]. Also, the model assume that an hidden state Qu

variable contains enough information to generate the visible label associated xu.
In order to combine together different BHTMMs in such a way that they

exchange information, we introduce a mixture variable K which indexes the
different BHTMMs. Therefore, the likelihood of a tree xn is given by:

P (xn) =

T∑

t=1

P (K = t)P (xn | K = t) (1)

where the value P (xn | K = t) indicates the likelihood of the sample xn accord-
ing to the t-th BHTMM and the value P (K = t) is the weight associated to the
t-th mixture’s component. The value of P (xn | K = t) can be derived summing
the complete likelihood P (xn,Qn | K = t) over the hidden state variables. The
complete likelihood is obtained using the conditional independence assumptions
introduced by BHTMM:

P (xn,Qn | K = t) =
∏

u∈LFn

P (Qu | K = t)P (xn
u | Qu,K = t)

×
∏

v∈Un

L∑

l=1

P (Sv = l | K = t)P l(Qv | Qchl(v),K = t)P (xn
v | Qv,K = t)

(2)

where LFn is the set of leaves in the n-th tree and P (Qu | K = t) is the priori
distribution defined by the t-th BHTMM on them. Similarly, Un denotes the
set of internal nodes in the n-th tree while P (Sv = l | K = t) is the switching
parents distribution defined by the t-th BHTMM and measures the weight of
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the contribution of the l-th child to the state transition of node v. Finally,
P l(Qv | Qchl(v),K = t) indicates the dependency between a node and its l-th
child according the t-th BHTMM. The expression derived is the same obtained
in [4], apart from the conditioning over the mixture variableK. This dependency
is needed to obtain T different models, each of them with different potentials.

Learning the mixture model parameters can be achieved using the EM algo-
rithm. During the E-step, we would like to estimate the posterior distribution
of the hidden variables given the visible ones. The posteriors of the BHTMM
hidden variables are obtained applying the upward-downward algorithm follow-
ing [4]. The upward pass is a bottom-up recursive procedure which computes
recursively the following quantities:

βu(i, t) = P (Qu = i | xn
u,K = t) =

=
P (xn

u | Qu = i,K = t)
∑L

l=1 P (Sv = l | K = t)βu,chl(u)(i, t)∑C
j=1 P (xn

u | Qu = j,K = t)
∑L

l=1 P (Sv = l | K = t)βu,chl(u)(j, t)

(3)

where βchl(u)(i, t) =
∑C

j=1 P
l(Qu = i | Qchl(u) = j,K = t) is an auxiliary value.

The base case of the upward recursion are the leaf nodes, since the numerator
in (3) simplifies to P (xn

u | Qu = i,K = t)P (Qu = i | K = t). The β-recursion
ends when the root node is reached; moreover, the root value is used as the base
case for the downward pass, since ε1(i, t) = β1(i, t) = P (Qu = i | xn,K = t).
Then, the posterior is computed for all the other nodes starting from the root
and following the recursive rule

εlu,chl(u)
(i, j, t) = P (Qu = i, Qchl(u) = j | xn,K = t) =

=
εu(i, t)βchl(u)(j, t)P (Su = l | K = t)P l(Qu = i | Qchl(u) = j,K = t)

∑L
l′=1 P (Su = l′ | K = t)βu,chl′ (u)(i, t)

.

(4)

and marginalising over the parent variable. Also, we compute the posterior of
the mixture variable K using the equation:

P (K = t | xn) =
P (xn | K = t)× P (K = t)

P (xn)
(5)

where P (xn | K = t) is the likelihood computed in the upward pass [4] for each
BHTMM and P (K = t) is the prior distribution of the mixture variable.

The M-step update equations for the BHTMM parameters are the same
derived in [4], despite of using posteriors computed according to the equation
(4). The update equation for the mixture variable priori is obtained as follow:

P (K = t) =

∑N
n=1 P (K = t | xn)

N
. (6)
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3 Experimental Analysis

First, we have performed a preliminary test on controlled data to assess wether
the mixture of hidden trees (MIX-BHTMM) offers an advantage with respect to
a single BHTMM in terms of identifying structural regularities. We composed
a synthetic dataset containing ternary trees of 3 types, i.e. left-asymmetric,
symmetric and right-asymmetric, depending on the proportion of nodes in the
children subtrees. Each tree is generated by a top-down recursive procedure:
for each node two distributions are sampled due to generate child nodes and
their labels. Both MIX-BHTMM and BHTMM have been trained on data in
an unsupervised setting. At test time, the MIX-BHTMM determines the cluster
assignment by sampling the posterior of the mixture variable while the BHTMM
determines it by sampling the posterior of the hidden root variable. Different
configurations of both models have been validated, varying the hidden state
number C for BHTMM and the number T of mixture components. Each config-
uration has been trained 5 times with a different random initial configuration.
Clustering quality is assessed by means of the Silhouette index [5]. For our pur-
pose, we measure the distance between two trees applying the Ruzicka distance
[6] on theirs representative matrix, where a representative matrix An for a tree
xn is a matrix such that the value anij counts how many times the label j appears
in a node in the i-th position in the xn tree. The results obtained in Table 1
shows clearly the benefits of the mixture variable. The MIX-BHTMM score is
always closer to the score obtained using the ground truth (i.e. assigning each
tree of a different type in a different cluster) which is 0.15. Viceversa, the single
BHTMM score is always near to 0.

Following, we have tested MIX-BHTMM on two data sets from the 2005
and 2006 INEX Competition [7]. The INEX05 dataset is made up of 9, 361
trees (4, 820 in the training set and 4, 811 in the test set), 11 classes and 366
label. The maximum out degree is 32. The INEX06 dataset is made up of
12, 107 trees (6, 053 in the training set and 6, 054 in the test set), 18 classes and
65 label. The maximum out degree is 66. For these datasets, we assess both
the clustering quality as well as the ability of the MIX-BHTMM to provide an
effective encoding of tree data for supervised learning. In particular, a fully
connected feedforward network has been attached as read-out layer to perform
tree classification from its compressed representation generated by the mixture.
In our experiment, the compressed representation of an INEX tree xn is given
by a matrix A of size C ×L× T where the value ailt is the sum of the posterior
P (Qu = i | xn,K = t) for all hidden variables Qu which are in the l-th position
(i.e. they are the l-th child of its parent). Note that, despite the presence of
the supervised neural layer, training of the MIX-BHTMM is always performed
in a fully unsupervised way. A model selection procedure using a 3-fold CV on
the training data has been used to select the number of hidden neurons among
{20, 40, 60, 80, 100}: results in Table 2 show the tested performance on the best
configuration in validation.

From the clustering perspective, results on the INEX05 dataset (see Table 2)
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Silhouette index T = 3 T = 5 T = 7
C = 2 0.18 (0.05) 0.16 (0.04) 0.15 (0.03)
C = 4 0.15 (0.03) 0.12 (0.05) 0.14 (0.01)
C = 6 0.14 (0.01) 0.13 (0.01) 0.15 (0.03)

Single BHTMM 0.01 (0.08) −0.01 (0.07) −0.11 (0.08)

Table 1: Mean silhouette index over 5 runs (std in brackets) on a synthetic
dataset. For the BHTMM, T = C, i.e. the number of hidden states.

highlight that the introduction of a mixture encourages to solve the task using a
small number of hidden states (the best score is obtained with C = 2). In fact,
an high number of hidden states implicates more expressive mixture components
which can model multiple tree structures. As a consequence, a single mixture
component could be selected, vanishing the mixture benefits. This behaviour is
more evident on INEX06 where there seems to be a the lack of clear structural
differences among trees. The models with C = 8 tend to create only one cluster
and therefore the Silhoutte index is not defined.

With respect to the supervised setting, the results on INEX05 show that the
state of the mixture variable provides useful information to the classifier. In
fact, the classification error is lower when more mixture components are used.
Nonetheless, when increasing the number of hidden states the classifier is also
able to address the task due to the increased expressiveness of each mixture com-
ponent. The advantages of using a mixture variable is less evident on INEX06
(Tab. 2) again due to the lack of clear structural differences among trees. The
INEX benchmarks allow to confront MIX-BHTMM with two related approaches.
The first is the input-output BHTMM (IO-BHTMM) [8], which has been pro-
posed to introduce discriminative training of BHTMMs by having a single shared
model for all classes (like with MIX-BHTMM), instead that a single indepen-
dent BHTMM per class. The second is a generative model for tree clustering
on topographic maps (GTM-SD) [9] that, like MIX-BHTMM, is fully unsuper-
vised and can be used for classification by adding a classifier on the generated
tree encodings. The lowest errors achieved by IO-BHTMM are of 9.83% for
INEX05 and 72.39% for INEX06 being, in both cases, over 2% worse than those
by MIX-BHTMM. The GTM-SD achieves a performance comparable to that of
MIX-BHTMM, with an error of 7.52% for INEX05 and 69.76% for INEX06 [10].
However, in both cases GTM-SD uses 400 hidden states while MIX-BHTMM
uses 44 and 72 hidden states for INEX05 and INEX06, respectively, denoting a
better exploitation of the encoding space.

4 Conclusion

We have introduced a mixture of hidden tree models based on BHTMM. The
introduction of the mixture allows to capture structural information from data
more efficiently than using a single BHTMM, resulting on models of lesser com-
plexity (in terms of total number of states) and yielding to more discriminate
encodings. This is the consequence of the introduction of the mixture variable,
which represents contextual information shared among all tree nodes. There is
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INEX05

Silhouette index T = 6 T = 11 T = 22
C = 2 0.12 (0.01) 0.13 (0.07) 0.20 (0.04)
C = 4 0.13 (0.09) 0.17 (0.02) 0.15 (0.02)
C = 8 0.08 (0.00) 0.11 (0.05) 0.17 (0.06)

Classification error T = 6 T = 11 T = 22
C = 2 17.66 (1.55) 13.74 (4.76) 7.30 (1.33)
C = 4 12.38 (4.35) 8.46 (4.08) 9.75 (4.70)
C = 8 10.53 (4.45) 7.73 (3.24) 9.05 (3.81)

INEX06

Silhouette index T = 9 T = 18 T = 30
C = 2 0.05 (0.00) 0.05 (0.01) 0.06 (0.00)
C = 4 0.08 (0.00) 0.04 (0.00) 0.09 (0.00)
C = 8 − 0.06 (0.00) −

Classification error T = 9 T = 18 T = 30
C = 2 72.51 (1.39) 73.77 (2.45) 73.25 (1.43)
C = 4 69.47 (2.92) 72.26 (3.20) 70.19 (1.40)
C = 8 69.17 (1.60) 69.29 (1.07) 71.63 (3.40)

Table 2: Mean scores for the INEX datasets over 5 runs (std in brackets).

no guarantee that a single BHTMM learns to model such information using only
local dependencies. Also, we have shown how MIX-BHTMM can act as encoder
merging together the posterior of all nodes due to compress tree information in
a fixed representation. Given this preliminary results, we are planning to use
it in the more challenging scenario of learning tree-to-tree transductions, where
the encoded information provides context to generate the output tree.
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