
One-class Autoencoder approach to classify
Raman spectra outliers

Katharina Hofer-Schmitz, Phuong-Ha Nguyen and Kristian Berwanger ∗

Fraunhofer Institute for Applied Information Technology FIT
Schloss Birlinghoven - 53754 Sankt Augustin - Germany

Abstract. We present an one-class Anomaly detector based on (deep)
Autoencoder for Raman spectra. Omitting preprocessing of the spectra,
we use raw data of our main class to learn the reconstruction, with many
typical noise sources automatically reduced as the outcome. To separate
anomalies from the norm class, we use several, independent statistical
metrics for a majority voting. Our evaluation shows a f1-score of up to
99% success.

1 Introduction

Raman spectroscopy is a marker-free analytical method, applied in many re-
search domains [1], especially in biology [2].

Data collection for bio-chemical analysis of small-volume substances is typi-
cally tedious. Even slightest, hardly controllable environmental changes can add
noise to the recorded signal. One of the advantages of Deep Neural Networks
is that, assuming to have enough training data, one might skip preprocessing
completely [3].

We are currently observing cell modification processes (electroporation trans-
fection), which are typically only successful in few cases. To detect those, we
choose an one-class approach. Although it is not known a-priori how the Ra-
man spectra of the modified cells will differ, we can nonetheless take measure
of the original cells. This paper presents our preliminary research on solid and
dissolved proteins to demonstrate our method on a less complex spectra dataset.

The paper is structured as follows: In section 2 we present related literature,
then we introduce our approach in section 3 and finally we evaluate the described
method in section 4.

2 Related Work

Published work for Raman spectra classification include multivariate statistical
analysis methods including supervised methods as Partial Least Squares, Lin-
ear Discriminant Analysis, Support Vector Machines and unsupervised methods
as Principal Component Analysis (PCA) and Cluster Analysis (see [4] for an
overview). Classification with supervised Deep learning methods is considered
in [5, 6].
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However, for rarely observed samples of interest, Anomaly Detection ap-
proaches are much more suited (see [7, 8] for an overview). In [9] it is shown
that Autoencoders are able to detect subtle anomalies, where usual techniques as
PCA fail. Since we have a partially labeled dataset, we apply one-class training
methods, see e.g. [10, 11]. There, Replicator Neural Networks are trained on
one class and the reconstruction score is then used to classify the test dataset.

Our approach differs in the usage of an Autoencoder Neural Network. Instead
of reassigning the data into clusters as in Replicator Neural Networks, Autoen-
coder Neural Networks force the data through layers with less neurons to learn
the compressed representation. Moreover, we do not only consider the recon-
struction score, but also take into account the distribution of the reconstruction
scores of the training data.

3 Method

As mentioned in the introduction, for our biological application, it’s very costly
to collect spectra of the outlier class. Since the bio-chemical approach to identify
and characterize outliers takes months, approaching this as a classical two-class
problem is no option. It is however possible to take measure of our normal class
(pre-transfection cells) and train an one-class model.

This is done by training an Autoencoder network to learn our normal classes’
characteristics by minimizing the reconstruction error (score) with respect to the
given loss function, similar to the learnt components of PCA. When using the
learnt encodings to reconstruct irregular spectra, we expect a higher reconstruc-
tion error.

We use three statistical parameters directly derived from training data to
asses the results of the unknown samples: the maximum reconstruction score
smax, calculated from the mean absolute error between the original spectra and
its reconstruction, a standard deviation threshold tstd = μ+2σ, with mean value
μ and standard deviation σ and the interquartile threshold t80, which marks the
80% quartile of the reconstruction scores. If at least two of these thresholds are
exceeded, a sample’s reconstruction is considered as anomaly.

The Deep Learning library DEEPLEARNING4J is used for our experiments.
Stochastic Gradient Descent is applied, ADAM Updater for the learning rate,
L2-regularization with 0.0001 and the mean absolute error as loss function. As
activation function we use leaky ReLU, a modified ReLU activation function,
which helps to avoid the problem of vanishing gradients. The weights were
initialized with ReLU initialization.

3.1 Datasets

We apply a min-max scaler with the range of [0, 1] to the y-axis and trim the
x-axis to the region of interest of the spectrum for all data samples.
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3.1.1 Cysteine on Silicon

Cystein powder was dissolved in hydrochloric acid solution and let to dry on a
silicon wafer. Our dataset consists of 5000 Silicon (S) and 5000 Cysteine (Cys)
spectra. The S-data is split into a 4500 : 500 ratio for training and testing. We
also use all 5000 Cys-spectra for testing.

3.1.2 Glucose Oxidase in Reaction Buffer

50 μL of 100 U/mL Glucose Oxidase solution in Reaction Buffer were applied
to a glass slide and covered to avoid desiccation. This dataset consists of 2000
Reaction Buffer (RB) and 41 Glucose Oxidase (GOx) spectra. We use 1800
RB-spectra for training and the remaining 200 and 41 GOx-spectra for testing.

4 Results

4.1 Cysteine on Silicon

We used 650 input nodes and three inner layers with 64, 16 and 64 nodes,
respectively. The learning rate was set to 0.2.
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Fig. 1: Good (top row) and bad (bottom row) reconstruction examples

Some spectra and their reconstruction are given in figure 1. Some noise in
the spectra and furthermore a variance between each class can be observed. For
the reconstructions we observe, that especially spikes are removed and white
noise is reduced.
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The distribution of these scores is plotted in figure 2. As expected it shows
different distributions for the S- and Cys-data. While the scores of Cys and S
from the test data hardly overlap, we can see a bigger overlap between S training
data scores and Cys scores. Nevertheless, most spectra can be separated clearly.

The boxplot in figure 2 shows smax = 0.0836 for S. The other two thresholds
are given by tstd = 0.0815 and t80 = 0.0813 (for a comparison see table 1), while
all Cys-scores are located much higher.

Applying the different thresholds and considering our equally weighted method
we get the overall confusion matrix in table 2 showing that our method can de-
tect all Cys spectra, while only 9 Silicon spectra were wrongly classified as Cys,
i.e., a 1.83% false positive rate.

Threshold f1-score

smax 98.69 %
tstd 99.91 %
t80 99.03 %

overall 99.91 %

Table 1: Comparison of differ-
ent thresholds

Cys S

Cys 5000 0
S 9 491

Table 2: Overall confusion ma-
trix

8 · 10−2 9 · 10−2 0.1

S - Training

S - Test

Cys - Test

Fig. 2: Boxplots of reconstruction scores for Sil-
icon/Cysteine

4.2 Glucose Oxidase in Reaction Buffer

Here, we also use 650 input nodes, and 64, 4 and 64 nodes, respectively, in the
hidden layers. The learning rate was set to 0.3.

Some spectra and their reconstructions are plotted in figure 3. Compared to
the S/Cys-dataset, there is much more noise (peaks and white noise), which is
mainly filtered out by the reconstruction. Figure 5 shows different distributions
for the classes’ reconstruction scores. However, the overlap between the RB
scores and the GOx scores are much higher than for the S/Cys-dataset.

Moreover, considering the training data has smax = 0.1374, we cannot sepa-
rate any GOx spectra by that value, since the highest GOx score is 0.1276. The
other two thresholds are given by t80 = 0.1139 and tstd = 0.1182. The overall
evaluation is given in table 4 and table 3.

The results show that while 98.4% of RB spectra are correctly classified, only
63.41% of the GOx spectra are detected as anomalies. The problem here is that
the training data scores are much wider spread (see figure 5) - likely due to the
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Fig. 3: Good (top row) and bad (bottom row) reconstruction examples

Threshold f1-score

tstd 74.29 %
t80 74.51%

overall 74.29 %

Table 3: Comparison of differ-
ent thresholds

GOx RB

GOx 26 15
RB 3 197

Table 4: Overall confusion ma-
trix

0.1 0.11 0.12 0.13 0.14

RB - Training

RB - Test

GOx - Test

Table 5: Boxplots of reconstruction scores
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dominant contribution of noise to the spectra. However, the reconstruction of
RB spectra looks good and furthermore removes most of the noise.

5 Conclusion

Our results lead to good reconstructions of Raman spectra with promising clas-
sification results. The reconstructed spectra show that the model was able to
learn the shape of major peaks of the spectrum where characteristic chemical
information is contained. We consider to train our models with more data to
improve anomaly detection on our RB/GOx dataset, as the overall available
training data consisted of less than 2000 samples. We might also investigate the
usage of (deep) Denoising Autoencoder for the future and define new, indepen-
dent and possibly weighted thresholds especially to evaluate our approach on
complex spectra of the electroporation transfection process.
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