
Differential private relevance learning

Johannes Brinkrolf, Kolja Berger and Barbara Hammer∗

CITEC center of excellence
Bielefeld University - Germany

Abstract. Digital information is collected daily in growing volumes.
Mutual benefits drive the demand for the exchange and publication of
data among parties. However, it is often unclear how to handle these data
properly in the case that the data contains sensitive information. Differ-
ential privacy has become a powerful principle for privacy-preserving data
analysis tasks in the last few years, since it entails a formal privacy guar-
antee for such settings. This is obtained by a separation of the utility of
the database and the risk of an individual to lose his/her privacy. In this
contribution, we introduce the Laplace mechanism and a stochastic gra-
dient descent methodology which guarantee differential privacy [1]. Then,
we show how these paradigms can be incorporated into two popular ma-
chine learning algorithm, namely GLVQ and GMLVQ. We demonstrate
the results of privacy-preserving LVQ based on three benchmarks.

1 Introduction

The necessity to preserve a person’s privacy in databases has been debated for
more than twenty years [2]. While encryption can secure databases whenever
private information is revealed to only the user him/herself, the setting becomes
more problematic whenever important information of the database is offered to
the public. This is the case if summary information or trends which have been
inferred from the database are offered to the public, and it constitutes a key
challenge if personal data are used to train a machine learning model, which
is later rolled out to the public. While summary statistics or machine learning
models deliver accumulated information and general models, it cannot be ruled
out a priori that private information can be inferred from those, provided that
the model is coupled with according auxiliary data.

In this context, the notion of differential privacy (DP) has been proposed
as a formalism which provably limits the possibility to retrieve private informa-
tion from published models [3]. Basically, DP formalizes the intuition that the
amount of individual information which can be retrieved from such models is
strictly limited per query. This way, it can formally guarantee essential proper-
ties such as immunity of the formalism to auxiliary information and privacy of
individual information.

In this contribution, we propose an adaptation of Generalized Learning Vec-
tor Quantization (GLVQ) and its extension to relevance learning, the General-
ized Matrix LVQ (GMLVQ). Since a prototype based classification mechanism is
based on representatives within the vector space of input signals, it runs the risk
of revealing sensitive information about data which have been used for training.
Based on a formulation as cost optimization, we combine these methods with a
differentially private stochastic gradient descent to prevent such issues [1]. We
experimentally demonstrate the efficiency and effectiveness of the method.
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2 Differential Privacy

In the following, we briefly introduce the concept of differential privacy (DP).
We shortly recapitulate the notion of DP as well as a few popular DP strategies.

Differential privacy [3, 4, 5] constitutes a strong standard for privacy guar-
antees for algorithms on aggregate databases. Informally, it requires that the
output of a data analysis mechanism remains approximately the same if any
sample in the input database is added or removed. This guarantees that a single
entry cannot substantially affect the revealed outcome, hence it is impossible to
retrieve sensitive individual information from the latter. Now, we define DP first
and introduce specific differential private mechanisms later.

Definition (Differential Privacy [3]). Assume ε, δ > 0 are given. We are in-
terested in the privacy of an operation A such as a machine learning algorithm,
which maps a given set of training data D to a model or summary statistics re-
vealed to the user. These outcomes might be subject to manipulation or attacks,
which are unknown. To take this into account, the space of possible models is
modeled as a probability space where measurable events can take place. A ran-
domized function A gives (ε, δ)-differential privacy if and only if for all pairs
of adjacent datasets D and D′, and all events S

P[A(D) ∈ S] ≤ eε · P[A(D′) ∈ S] + δ.

Here, P refers to the probability induced by the algorithm A. Thereby, two
datasets D and D′ are adjacent if and only if D can be obtained from D′
by the deletion of one database entry (or vice versa).

This notion of DP ensures the privacy of any single sample which can be
used for training, because adding or removing any single sample results in eε-
multiplicative-bounded changes in the probability distribution of the output of
the algorithm only. DP is compositional in the sense that combining m multi-
ple mechanisms A that satisfy DP for ε1, . . . , εm results in a mechanism that
satisfies ε-differential privacy for ε =

∑
i εi [5]. We will call ε the privacy loss.

There are several approaches which satisfy ε-differential privacy, includ-
ing the Laplace Mechanism [3]. The latter deals with algorithms or functions
f : D �→ R

k from the domain of all datasets to vectorial outputs. It adds sym-
metric and scaled noise to each dimension of the output. The magnitude of the
required noise depends on the so-called sensitivity of f . It refers to the max-
imum difference between the outputs of two adjacent datasets. Formally, the
sensitivity of f is defined as

Δf = max
adjD,D′

‖ f(D)− f(D′) ‖1

measured in L1 norm. Given a function f the Laplace mechanism is defined as

Af (D) = f(D) + (Y1, . . . , Yk)
T

for a given database D, where Yi are i.i.d. random variables drawn from the
Laplace distribution Lap (Δf/ε). This distribution is defined by the probability
density function P[Lap(β) = x] = 1

2β e
−|x|/β. It can be shown that the resulting
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mechanism Af is (ε, 0)-differential private. The Laplace mechanism constitutes
a very convenient way to turn a given database query into a differentially pri-
vate one. However, it has only limited applicability if f is given by a learning
algorithm since its sensitivity might be complicated to bound. Therefore, more
methods which directly rely on typical machine learning mechanisms have been
proposed. A very popular one adds differential privacy to gradient techniques.

Differential Private Stochastic Gradient Descent is introduced by Abadi et
al. [1]. Essentially, the mechanism assumes that an objective loss function L(θ)
with parameters θ is given which is optimized to reveal the model parameters θ.
The proposed formalism computes the gradient ∇θL(θ, xi) of the loss function
for each sample in a random subset of size L which is taken from the training
set of size N with sample probability q = L/N . Then, each gradient is clipped
whenever its L2 norm is greater than a threshold C. Adding Gaussian noise
drawn from a normal distribution N (0, σ2C2) for each dimension for a specific σ
guarantees DP. The results are averaged and a noisy gradient descent according
to these directions is taken.

This algorithm reflects mini-batch optimization techniques as are popular for
the optimization of non-convex cost functions in machine learning. It has been
shown that the resulting algorithm is (ε, δ)-differential private for any δ > 0,

provided σ ∈ Ω(q
√
T log(1/δ))/ε, where T is the number of steps.

3 Differential Private G(M)LVQ

In the following we describe how we change the training of the G(M)LVQ models.
We propose to use the Laplace mechanism for the initialization and the intro-
duced gradient descent to optimize the cost function of our GLVQ and GMLVQ
model. The result will be a novel version of GLVQ and GMLVQ which fulfills
the requirements of differential privacy. Note, that we need to guarantee the
differential privacy of all operations, including the prototype initialization and
gradient update.

We are interested in classification scenarios in D ⊂ R
d with k classes which

are enumerated as {1, . . . , k}. Prototype-based classifiers are defined as follows:
labeled prototypes w1, . . . , ww are specified such that a good classification and
representation of the data is achieved. A new sample x is classified by the winner
takes all scheme. Standard GLVQ uses the squared Euclidean metric d(x, wj) =

(x −wj)
T
(x−wj) and GMLVQ learns a semi-positive definite matrix Λ = ΩTΩ

and uses the squared distance function dΛ(x, wj) = (x−wj)
TΛ(x − wj) [6].

The cost function

E =
∑
i

Φ

(
d+(xi)− d−(xi)

d+(xi) + d−(xi)

)

is introduced by Sato and Yamada [7], where Φ is a monotonic increasing func-
tion, e.g., the logistic one, d+(xi) the squared distance of xi to the closest pro-
totype of the correct class and d−(xi) the closest squared distance to another
prototype of a different class than xi. Training takes place based on a given
training set, by initializing the prototypes within the class centers and minimiz-
ing the cost term E with respect to the prototypes and, for GMLVQ, also the
metric parameters afterwards. In the following we use the identity Φ(x) = x.
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Initialization: For simplicity, we assume that we use one prototype per class.
In standard G(M)LVQ, we initialize each prototype by the class centers. These
can be calculated based on the sum of all samples of each class and the number
of class members. These operations can be enhanced to DP versions based on
the Laplace mechanism as follows: We want to compute wj = 1/Nj

∑
i:c(xi)=j xi

for each class j. The cardinalities of the classes are given by the function f :
D �→ N

k, f(D) = (N1, N2, . . . , Nk). This function has a sensitivity Δf = 1
because adding or removing one data point in the dataset changes only the
output of one Ni by one. In the literature, these functions are also known
as histogram queries [5]. The sum of all points in each class is given by the

function g : D �→ R
k·d, g(D) =

(∑
i:c(xi)=1 xi, . . . ,

∑
i:c(xi)=k xi

)
. Without loss

of generality, we assume that the samples are normalized such that D ⊂ [−1, 1]d.
Then the sensitivity of the function is Δg = d. One adjacent dataset can change
the output at least by one in each dimension in the L1 norm because the classes
are disjoint sets.

For a given privacy loss ε1 we obtain all Ni and all sums with the Laplace
Mechanism in a differentially private way. If we use the noise scales βf = 2/ε1
for the function f and βg = 2d/ε1 for g we achieve a ε1-differential private
mechanism altogether due to standard arguments for composition. Note, that
the noise does not depend on the number of samples in the dataset. Hence, it
has a smaller impact on big ones and a higher if it is getting smaller.

Gradient descent: For the gradient descent, we rely on the algorithm as de-
scribed in chapter 2 by Abadi et al. [1]. Let L be the batch size, C the gradient
norm bound, q = L/N the sample probability for one sample, E the number
of epochs and T = E/q the runs of the gradient descent and the number of
updates. For GLVQ we just have the gradients of the prototypes which we have
to clip. In the case of GMLVQ, the parameters of the projection matrix Ω are
also clipped together with the parameters for the prototypes in the L2 norm.
For a given ε2 and δ we can calculate the noise scale by σ = 2q

√
T log(1/δ)/ε2.

Hence, the total privacy loss of the whole training is ε = ε1 + ε2 and we obtain
an (ε, δ)-differential private algorithm.

4 Experiments

We test our approach with three real world datasets, MNIST [8], Motion Track-
ing [9] and Image Segmentation [10]. The first has 70.000 instances with pictures
of handwritten digits. The second recorded accelerator data by a mobile phone
to classify motions and has 10.299 samples. The last one has real valued image
descriptors of 2.310 small landscapes image patches. For the benchmark tests,
we repeat a 5-fold cross validation five times. The total privacy loss is split into
ε1 = 0.2ε for the initialization step and ε2 = 0.8ε for the parameter optimiza-
tion. The other parameters are δ = 10−5, q = 0.01, C = 0.5 and E = 50. We
compare our approach with non-private versions of GLVQ and GMLVQ. There,
the optimum is found by a standard stochastic gradient descent (SGD) and by
the BFGS algorithm, a quasi-Newton method for solving nonlinear optimization
problems [11]. It represents the minimum error which we can reach based on
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Fig. 1: GLVQ and GMLVQ test error rates for our approach and the non-private
version with SGD optimization on the datasets. Only the privacy loss varies and
all others are fixed (C = 0.5, q = 0.01 and E = 50).

GLVQ and GMLVQ respectively. For MNIST we use one fold for training and
four as the test set. For Image Segmentation and Motion Tracking, we swap the
training and test sets due to the smaller set sizes.

In Fig. 1 results for different privacy loss for all datasets are shown. The
dashed lines are the results for GLVQ and the solid for GMLVQ. One can see
that the privacy loss effects the classification strongly and the curves fall sharply
at a certain point. For the datasets the points vary between ε = 0.75 for Mo-
tion Tracking and ε = 2.5 for Segmentation. This is due to the higher effects
of the noise on smaller datasets or smaller lot sizes. The choice of the other
hyperparameters has a strong influence in critical regions for epsilon only, being
rather robust for epsilon larger 1. As an example, for Motion data we test ten
different values for C ∈ [0.05, 2] and E ∈ [10, 100] and 20 for q ∈ [0.0005, 0.1].
In this contribution we report the standard deviation of the test errors for three
different ε. In the critical region where ε = 0.75 the standard deviations are
0.1275, 0.0361 and 0.0899 for C, E and q, respectively. If ε = 1 they are 0.0412,
0.0081 and 0.037 and if ε = 2.5 they are 0.0062, 0.006 and 0.0062. The impact
of C and q are higher than for E due to the variances of the noise in the gradient
descent (σ2 ∼ C2(q

√
E/q/ε)2).

In Tab. 1 the means and the standard deviations of the error rates for all

dataset DP ε = 0.75 DP ε = 1.5 DP ε = 2.5 non priv. SGD non priv. BFGS

MNIST
0.1893 (0.0042) 0.1871 (0.0020) 0.1871 (0.0020) 0.1857 (0.0022) 0.1853 (0.0018)
0.2188 (0.0162) 0.1721 (0.0067) 0.1673 (0.0033) 0.1583 (0.0031) 0.1484 (0.0021)

Motion
0.1121 (0.0061) 0.1123 (0.0063) 0.1121 (0.0058) 0.1112 (0.0062) 0.1111 (0.0062)
0.1116 (0.0074) 0.1048 (0.0080) 0.1038 (0.0057) 0.0914 (0.0068) 0.0897 (0.0066)

Segment
0.4793 (0.0779) 0.1792 (0.0152) 0.1635 (0.0124) 0.1458 (0.0133) 0.1458 (0.0132)
0.2642 (0.0432) 0.1745 (0.0205) 0.1696 (0.0233) 0.0932 (0.0108) 0.0870 (0.0109)

Table 1: Mean and std. dev. in brackets for test error rates. As a baseline, the
results of a non-private training with SGD and a BFGS optimizer are given. The
first rows for each dataset are results for GLVQ the second for GMLVQ.
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three benchmark sets are listed. For GLVQ we often get trained models which
are as good as the non-private ones. For GMLVQ the BFGS optimization finds
better parameters than SGD. Here, the private versions get more trouble due
to the noise in the relevance matrix. Even small changes in the values of the
matrix can cause a worse classification. To test the matrix sensitivity, we add
normal distributed random numbers with variance σ = 0.025 on each element
of the relevance matrix. We observe an increase of 0.0277± 0.001 (from 0.1484
to 0.1761) of the error rate for the original GMLVQ approach and the MNIST
dataset. For the Motion dataset the error increases by 0.0234±0.0085 using the
same settings.

5 Conclusions

We have introduced an approach to obtain a differential private version of GLVQ
and GMLVQ. We changed the initialization step and used a differential private
SGD for optimization. In the results, we showed that for the real-world dataset
MNIST a privacy loss ε > 1.5 suffices to achieve a differential private model
that is as good as the non-private versions. For smaller datasets, a bigger ε is
needed because the noise has a bigger impact. These promising results open the
way towards LVQ variants which can publicly be released, e.g., in the medical
domain albeit it has been trained based on sensitive data.
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