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Abstract. In this paper, we present a new visually guided exploration approach for 

autonomous learning of visuomotor skills. Our approach uses hierarchical Slow 

Feature Analysis for unsupervised learning of efficient state representation and an 

Intrinsically motivated Continuous Actor-Critic learner for neuro-optimal control.  

The system learns online an ensemble of local forward models and generates an 

intrinsic reward based on the learning progress of each learned forward model. 

Combined with the external reward, the intrinsic reward guides the system’s 

exploration strategy.  We evaluate the approach for the task of learning to reach an 

object using raw pixel data in a realistic robot simulator. The results show that the 

control policies learned with our approach are significantly better both in terms of 

length and average reward than those learned with any of the baseline algorithms. 

1 Introduction 

A core challenge for an agent that interacts with the world is to learn visuomotor 

abilities that map from raw high-dimensional sensory input to raw control output. 

This ability, however, cannot be directly learned supervised since there is no labeled 

training data already available, and the agent must learn online using a reward signal 

from its environment that is frequently delayed and sometimes sparse. Deep Rein-

forcement Learning (RL) has been widely used to learn this mapping by finding a 

control policy that maximizes the expected total reward, utilizing deep neural archi-

tectures as powerful nonlinear function approximators [1] [2]. One problem these 

approaches face is the sample complexity and the training time necessary to adjust the 

very large number of parameters (weights) such architectures typically have. State 

representation plays a key role here since low-dimensional, highly informative repre-

sentations that are learned unsupervised often reduce the training parameters and time 

and are thus preferred to other representations. Slow Feature Analysis (SFA) is an un-

supervised learning method that learns representations with these desirable properties.  

 SFA is primarily used to learn compact and temporally stable abstraction from a 

temporal input sequence [3]. Recently, slow features have been successfully applied 

as a low-dimensional input for precise prediction of view-invariant attributes of 

objects, such as identity, position and orientation in the context of supervised learning 

[4], for simultaneous learning of place and head-direction cells for potential robot 
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navigation [5][7], and for learning a sequence of task-independent and increasingly 

difficult-to-learn abstractions from raw images that are used to discover reusable 

skills on a humanoid [6]. While Legenstein et al. [7] were the first to explicitly study 

the effect of using SFA output as state encoding in standard RL, experiments were 

limited to low-dimensional action space in a simple 2D environment with non-sparse 

reward in the variable-target task. 

 Beside unsupervised learning of efficient representations, truly autonomous 

robots often exist in environments where external rewards are absent or sparsely 

spread. Intrinsically motivated RL addresses this by equipping the agent with intrinsic 

drives, such as fear, hunger or curiosity which enable it to meaningfully explore its 

environment [8]. Several Intrinsically motivated RL methods were proposed after [8], 

but very few have addressed tasks with continuous action spaces which is essential for 

realistic autonomous systems [9] [10]. 

 In this paper, we use state representations learned by a hierarchical SFA 

network and extend the Intrinsically motivated Continuous Actor-Critic (ICAC) 

algorithm [10] to the case of learning from raw image data. The proposed system 

comprises two distinct phases: unsupervised training of the SFA network on a visual 

input stream, and training the ICAC’s actor and critic neural networks using the 

trained SFA network as a preprocessing step for the visual input to the ICAC 

networks. Section 2 describes the training process and the architecture of the 

hierarchical SFA. The ICAC algorithm on the SFA output is then presented in Section 

3, followed by experiments and results in Section 4. 

2 Hierarchical Slow Feature Analysis 

The learning problem in SFA is an optimization problem of finding the most slowly 
varying features in an input signal.  Given an I-dimensional input signal     , the task 
is to find a set of J input-output functions                        such that the 

output signals                 minimize  

             
   (1) 

under the constraints 

                             (2) 

        
                               (3) 

                                                              (4) 

with            indicating temporal averaging and the time derivative of   respec-

tively. Constraints (2) and (3) avoid a trivial solution of constant output and constraint 

(4) ensures that different functions    contribute different features. This is a variation-

al calculus optimization problem and is generally difficult to solve. But if the func-

tions    are constrained to be linear combinations of nonlinear functions, then the 

problem is simplified. The solution is obtained by an eigenvector approach and can be 

found with the SFA algorithm which is guaranteed to find a global optimum [3].  

 In our work, we apply SFA hierarchically as in [4]. This is both computationally 

efficient and biologically realistic since hierarchical ordering requires only local com-

munications similarly to how extensive connectivity is avoided in the neural circuits 

of the visual cortex [11]. Our hierarchical architecture consists of three layers of SFA 

nodes (see Fig. 1). Each node in the first layer has a receptive field of 88 pixels in 
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the original 6464 pixel input with 4-pixel overlap, resulting in 1515 nodes with 

partially overlapping receptive fields. The second layer’s nodes have receptive fields 

of 66 nodes in the lower first layer with 3-pixel overlap, resulting in 44 nodes. The 

top layer has a single SFA node that covers the full image frame. We compute 32, 32 

and 16 SFA components for nodes in the lower, middle and top layers, respectively. 

All connections are topologically organized such that each SFA node receives inputs 

from neighboring nodes in the preceding layer. 

 Each individual SFA node implements four subsequent sub-processes, as shown 

in the inset in Fig. 1. First, a linear SFA is performed which reduces the effective di-

mension of the node input to 32; then the linear SFA output is quadratically expanded 

(original data with all quadratic combinations) to introduce non-linearities. White 

noise is then added to avoid unwanted singularities in the following SFA step. Finally, 

a second linear SFA is performed on the noise-added output. For training the network, 

we used 50K time points that correspond to a temporal sequence of input images (col-

lected over 3.2 hours on the simulator) generated by a random walk described in Sec-

tion 4. The training is done sequentially from bottom to top, each layer at a time using 

the same training sequence. Once trained, the network is used to generate an efficient 

state representation for the subsequent RL phase, as discussed in the next section. 

3 Intrinsic Neuro-optimal Control 

In [10] we proposed ICAC, an actor-critic RL algorithm that learns an optimal action 

policy by learning an ensemble of local predictive models of environmental dynamics 

online and generates an intrinsic reward based on the learning progress of each model. 

Using the learning progress of predictive models for selecting explorative actions is in 

accordance with the Goldilocks effect in infant cognition that attributes optimal learn-

ing to stimuli of an intermediate degree of difficulty [12]. This is evident in how in-

fants seek increasingly complex learning samples by self-organizing their interaction 

with the world, moving from well-explored regions to others where they expect to 

learn new effects of motor activity. ICAC, however, has only been applied to low-

dimensional inputs in non-visual control tasks. Here, we extend and evaluate ICAC 

for visually guided motor tasks using state representations learned unsupervised with 

hierarchical SFA. 

 ICAC, as shown in Fig. 1, has two components: a multi-predictor network and a 
control module. The first incrementally partitions the sensory space into local regions 
with local predictive models using the Instantaneous Topological Map (ITM) [13], a 
self-organizing network developed for strongly correlated stimuli as present in most 
robotics applications where data is generated by exploring along continuous trajecto-
ries and has been successfully used in RL [14]. The network gives an intrinsic reward 
based on the learning progress of the current region’s predictor. The control module 
guides the action selection using the combined external and intrinsic reward as fol-
lows: We compute the change between two consecutive average prediction errors of a 
predictor associated with the best-matching ITM node n for the current world state 
(the SFA output). This change represents the learning progress the robot has made or 
expects to make and is combined with the perception error, which is the distance be-
tween the state encoding and the weight vector of n, to give the intrinsic reward. This 
self-generated reward encourages the robot to try actions that maximize its learning 
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progress and lead to perceptually novel states. For action selection, the Continuous-
Actor-Critic-Learning Automaton (CACLA) [15], a state-of-the-art continuous action 
RL method, is used to learn an optimal control policy based on the combined intrinsic 
and external reward. We update the actor only when the critic's estimate increases, as 
opposed to gradient ascent on the value [2]. Both the critic and actor are represented 
by feed-forward neural networks and updated online from the sample transitions the 
robot experiences while interacting with the world (for details on ICAC refer to [10]). 

4 Experiments and Results 

We evaluate our algorithm on the random-target reaching task with a 3-DoF arm 

shown in Fig. 2 (a) in the V-REP robot simulator. The robot arm’s joints can move 

within              representing the joint values. The robot gets a reward of 10.0 on 

reaching the goal region (green sphere in Fig. 2(a)) or, otherwise, a negative reward 

based on the Euclidean distance of the gripper tip to the goal. We also performed 

experiments on the more challenging sparse-reward setup (reward of 10.0 on reaching 

the goal region or 0.0 elsewhere). To train the SFA network, we performed random 

walk of 50K steps (3.2 hours on the simulator). In each step the robot takes a random 

action (max of 1 degree per joint) in the simulator and records an image of the world. 

The image sequence is then used as a single batch to train the network on three passes 

corresponding to the three layers of SFA nodes (see Sec. 2). 
 The actor and critic in ICAC and CACLA are represented by 2-layer, fully 
connected MLPs of 20 tanh hidden units. The output units are linear: three in the actor 

Fig. 1: SFA-based ICAC system. The ICAC agent takes an action chosen by the 
actor and the environment returns an observation. The SFA network then computes 
a state representation which the Multi-predictor Network uses to adapt its topology 
and, along with the current action, to update the learning progress of the predictor 
corresponding to the best-matching node from the previous timestep. The updated 
learning progress serves as an intrinsic reward that is combined with the external 
reward, if any, and fed to the critic to update its estimate of the utility of the current 
action. Finally, the actor is updated towards the current action if it is found to 
improve the critic’s estimated utility. 
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and one in the critic. The input to the actor and critic is the 16-dimensional SFA-
output and the goal’s Cartesian coordinates (the goal is not rendered in the visual 
input since only its current position is relevant for reaching). The learning rate was set 
to 0.01. We stored the most recent 1M state transitions in an experience replay buffer 
and performed mini-batch SGD with batch size 1000 for updating the critic during 
online training. The reward discount was 0.99. All actions (joint value changes) were 
drawn from a Gaussian distribution with a mean at the actor’s present output and 
standard deviation of 0.3 and were clamped to a max of        degrees per joint. The 
predictors are 2-layer MLPs trained to predict future states (SFA-output) from 
previous state/action pairs. The above values were determined empirically. In each 
learning episode, the robot is given a maximum of 1000 steps to reach the current 
goal after which a new episode begins with a random goal position. 
 We run ICAC and two baselines of CACLA and uniform random policy for 1K 
episodes and averaged the results over 10 independent runs. As shown in Fig. 2, the 
ICAC reached much better policies in a much smaller number of episodes in both 
reward setups. While CACLA was able to converge to a relatively good policy in the 
reward-dense setup, it failed in the reward-sparse setup where ICAC was converging 
to a near optimal policy after 600 episodes of learning. In Table 1, we give a more 
concise comparison. Again, the table shows that ICAC outperformed the baseline 
approaches and that its performance was significantly higher in the difficult setting of 
the reward-sparse world, reaching a success rate of 100% over the last 200 episodes. 
 

 Learning speed Final performance 

 Random CACLA ICAC Random CACLA ICAC 

reward-dense world -423.58 -85.93 -7.81 -434.70 -97.55 0.87 

reward-sparse world 9.80 8.07 9.64 9.95 7.45 10.00 

reward-dense world 198.15 58.17 15.20 201.08 63.26 10.63 

reward-sparse world 198.15 236.58 57.65 201.08 250.50 30.82 

Table 1: Mean reward (upper half) and mean no. of steps (lower half) over the entire 
learning period (learning speed) and for the last 200 episodes (final performance). 

Fig. 2: The environment with the 3D arm model and the output of the vision sensor in 
the upper left corner (a). Learning curves, averaged over 10 runs, for reaching with 3-
DoF arm using the baselines and ICAC in different reward setups: reward-dense (b) 
and reward-sparse (c). The average over 50 episodes is shown for readability. 
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5 Conclusion 

In this paper, we present SFA-based ICAC as an algorithm for reinforcement learning 

of visually guided reaching tasks. We demonstrate that deep slow features can be used 

to learn efficient and informative state representations critical for fast online learning 

of optimal control policies. SFA, however, is susceptible to learning task-irrelevant 

slow features like a change in the scene’s background. Enhancing SFA to address 

such issues gives an interesting direction for future work. The results presented in this 

paper prove that the exploration strategy of ICAC driven by the intrinsic reward is 

effective for finding optimal policies in a reward-sparse world. This is in line with 

theories from developmental psychology that stress the importance of intrinsic reward 

in complex environments [10] [12]. 
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