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Abstract. Estimating system’s accuracy is crucial for applications of in-
cremental learning. In this paper, we introduce the Distogram Estimation
(DGE) approach to estimate the accuracy of instance-based classifiers. By
calculating relative distances to samples it is possible to train an offline
regression model, capable of predicting the classifier’s accuracy on unseen
data. Our approach requires only a few supervised samples for training and
can instantaneously be applied on unseen data afterwards. We evaluate
our method on five benchmark data sets and for a robot object recognition
task. Our algorithm clearly outperforms two baseline methods both for
random and active selection of incremental training examples.

1 Motivation

Estimating the classification accuracy of a machine learning model is particularly
important in incremental learning tasks. This can be used to decide online
whether further training is required for a predefined target performance. If the
system accuracy does not improve with additional data the task may have to
be delegated [1]. The estimated accuracy can also be used to optimize workload
distribution in human machine interaction (HMI) scenarios where the system
collaborates with a human to provide a joint target performance.

There is some related work focusing on accuracy estimation for unlabeled
data. Platanios et al. [2] estimate classifier accuracy by considering the agree-
ment rate of multiple different classifiers trained with independent features, pos-
sibly underestimating performance gains using all features. Another recent ap-
proach by Donmez et al. [3] is also applicable with a single classifier but requires
the label distribution p(y) for evaluating a maximum likelihood. This is appli-
cable e.g. for medical diagnosis or handwriting recognition, where the marginal
frequency of each class is known. Conformal prediction has been introduced for
estimating a classifier’s confidence [4] which is related to accuracy estimation.

While the mentioned accuracy estimation approaches have been applied in an
offline learning setting, here we focus on incremental learning scenarios. Com-
mon choices to estimate the accuracy in incremental learning are to perform
cross validation on a fraction of the data or to use the interleaved test/train
error [5]. The latter requires a classification of each new example before using
it for training. However, both approaches solely estimate the accuracy based on
labeled instances. In most real world scenarios data is partially labeled since
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labeling information is usually expensive and difficult to obtain. Approaches
including unsupervised information in their estimation should be able to deliver
more precise results.

Our new approach is to train a regression model using the distance informa-
tion of instance-based models to predict classifier accuracy with only a fraction
of labeled data. We evaluate our method on five benchmark data sets and within
an object recognition task, both with random sampling and with active querying.
Our algorithm clearly outperforms the other methods in both cases.

2 Learning Vector Quantization

Instance-based classifiers have been shown to provide competitive approaches to
incremental learning tasks [5, 6, 7]. We denote our target classifier as C and
choose as examples k-Nearest-Neighbor (kNN) and Generalized Learning Vector
Quantization (GLVQ) (CkNN and CGLVQ) for evaluation. Their representa-
tion of the data is interpretative, the number of classes does not have to be
known beforehand, no complete retraining is necessary and efficient techniques
for querying new samples in active learning were studied before [8].

LVQ is more memory efficient compared to kNN, because several samples can
be represented by a single prototype. In LVQ, as originally proposed by Kohonen
et al. [9], an n-dimensional training-set X = {(xi, yi) ⊂ Rn × {1, ..., c}|i ∈
{1, ...,m}} is modeled through p prototypes W = {w1, ..., wp} and their assigned
labels L = {{l1, ..., lp}|li ∈ {1, ..., c}} for c classes. Notice that p can be varying
during training. The receptive field or Voronoi region of a prototype wi is defined
by V i = {x ∈ X||x−wi| ≤ |x−wj |∀i 6= j]} and an input sample can be classified
by choosing the label of the nearest prototype, where the Euclidean distance is
often used. During supervised training, the algorithm adjusts the position of
the prototypes so they model the training set optimally. An efficient variant
is generalized LVQ (GLVQ) [10]. The prototype positions are updated via the

rules ∆w+ = λΦ′(µ(x))d−

(d++d−)2 (x − w+) and ∆w− = λΦ′(µ(x))d+

(d++d−)2 (x − w−) where w+

is the prototype of the true class and w− is the next prototype of another class,
d+ and d− are their corresponding distances to x. Sato et al. [10] suggest to set
Φ(x) = 1

1+e−x and to use a relative distance for µ:

µ(x) =
d+(x)− d−(x)

d+(x) + d−(x)
(1)

Performing a prototype position update like above is equivalent to a stochas-
tic gradient descent. We will use µ later on for the accuracy estimation.

3 Accuracy estimation of incrementally trained classifiers

In this contribution we want to answer the following question: ”How can we best
estimate current accuracy of an incremental learning classifier, taking into ac-
count previous learning sessions?” So we first use a standard incremental learning
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paradigm [7] to create an ensemble of incrementally improving classifiers. Then
we train one regression model based on features computed on this ensemble.

Fig. 1: Diagram describing the training and testing process for estimation.

Our approach is to estimate the accuracy by learning an offline model using
statistics of the instance-based classifiers. In our evaluation we split up our data
set D into two equal sized sets TL for learning and TE for application of the
estimation (Fig. 1). We first train a classifier CL on TL and then estimate
the performance of a new classifier CE on TE . The classifiers are trained in
incremental batches with size Sb. While training CL the already trained samples
are in TrL and the yet unseen samples are in TeL, where TL = TrL ∪ TeL.

The idea behind our approach which we call Distogram Estimation (DGE)
is to obtain a distribution of the unseen samples from Te relative to the pro-
totypes. We therefore redefine the relative distance from eq. 1 so that it is
an unsupervised measure, where d+ is the distance of a sample to the nearest
prototype of any class and d− is the distance to the nearest prototype of another
class. To use this information with a common regression approach, we generate
a normalized histogram h as statistics with Nh representing the number of bins.
The corresponding bin size can be calculated by Sh = 1

Nh
. The i’th bin hi is

calculated by

hi(X) =
∑
x∈X

θ(x, i) where θ(x, i) =

{
1 if i ∗ Sh ≤ |µ(x)| < (i+ 1) ∗ Sh
0 else

(2)

To compensate for data sets with different or increasing number of samples,
we normalize the histogram so that

∑Nh

i=1 hi = 1. The advantage of using the
relative distance µ for building features is that its values lie between 0 and 1.
Also we do not have to take into account the dimension of the feature space or
the spread of the classes because the measure is only about relative distances of
nearest winner and nearest prototype of another class. So we can compensate
for classes of different sizes and distances.

We denote CLk as the classifier trained after batch k and our training set as
H = {h1, . . . , hn} where hk = h(TrLk ). The accuracy of classifier C on test set Te
is denoted as a = Acc(C, Te) and respectively for each batch: ak = Acc(Ck, Tek),
where Acc is the 0/1 accuracy.

After training the set of CLk , the accuracy estimator E is trained with
(hk, a

L
k ). For E we tested a neural net, Ridge Regression and Support Vec-

tor Regression. The neural net delivered best overall performance. We tested
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r ∈ {1, 2, 3} hidden layers with s ∈ {10, 30, 50} neurons each. The best perform-
ing net on our data sets has architecture r = 2 and s = 50, 30. The output layer
has one neuron which outputs the accuracy in a ratio from 0 to 1. The net is
trained in 50 epochs. We used the Keras framework1 with Tensorflow2 backend
to construct and train the neural nets.

During incremental training, the accuracy gets better and this effect becomes
noticeable in the histograms. Please note that it is also important for estimation
to include badly performing CLk from the beginning. C is trained Nri times with
a shuffled TL for producing more training data for E. This improves the result
because the initial state of the classifier is different, so we get more diverse
classifiers. Next, we train CE on TE analog to CL to verify E. More precisely
we train CE on TE and after each batch k with size Sb we calculate the absolute
error eabsk = abs(E(hk) − aEk ). After validation we calculate the mean absolute
error with mae = 1

n

∑
k e

abs
k where n is the number of batches. To compensate

an inhomogeneous data distribution we repeat the whole process with a different
TL and TE a number of times Nro and average the results.

data set3 properties mean absolute error (MAE)
GLVQ kNN

ns nd nc DGE itt cv DGE itt cv
MNIST(i) 60,000 50 10 0.022 0.023 0.019 0.011 0.026 0.018
MNIST(ii) 60,000 50 10 0.015 0.214 0.324 0.008 0.137 0.263

IRIS(i) 150 4 3 0.066 0.154 0.095 0.065 0.158 0.097
IRIS(ii) 150 4 3 0.030 0.282 0.194 0.041 0.296 0.182

CALTECH(i) 8,677 4,096 101 0.024 0.038 0.043 0.016 0.038 0.044
CALTECH(ii) 8,677 4,096 101 0.020 0.199 0.319 0.016 0.220 0.326

WDBC(i) 569 9 2 0.018 0.053 0.028 0.019 0.055 0.032
WDBC(ii) 569 9 2 0.010 0.118 0.098 0.011 0.122 0.084

OUTDOOR(i) 5,000 4,096 50 0.022 0.048 0.041 0.012 0.047 0.072
OUTDOOR(ii) 5,000 4,096 50 0.020 0.192 0.281 0.008 0.127 0.193

Table 1: Evaluation of DGE approach compared to baseline models. Accuracy
estimation was done after each batch. The table shows mean absolute error
(MAE) compared to ground truth for i) random selection and ii) active learning.

4 Evaluation

We used five data sets for evaluation (Table 1). For WDBC and IRIS we did
no preprocessing at all. For MNIST we used PCA for feature extraction. For
CALTECH and OUTDOOR we used the VGG19 deep convolutional neural net
[11] without the last softmax layer and with the weights from the image net
competition as a feature representation. Also we compare two different strategies
for selecting the samples from Te to train: i) random selection ii) active learning
[12] by primarily selecting examples close to the decision boundary (where d−
and d+ are most similar).

The parameters for the experiments were Nro = 10, Nri = 5, Nh = 15, Sb =
20 and we denote the number of prototypes per class (in GLVQ experiments) as

1python deep learning library, URL https://keras.io/
2open-source software library for machine intelligence, URL https://tensorflow.org/
3data sets are taken from archive.ics.uci.edu, yann.lecun.com/exdb/mnist, and [5]
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Nw = 5. The interleaved test/train error (itt) baseline is calculated over the last
ittws approaches, where ittws is tuned for best performance on each data set.
As a second baseline we choose a just 2 fold cross validation (cv) to compensate
a small TrE at early stages in training.

DGE has a smaller mean absolute error (MAE) compared to the baseline
models in most cases. The results from GLVQ compared to kNN do not differ
much. DGEs advantage becomes more noticeable in active querying experiments
where the baseline methods are significantly worse.

5 Application Example

Fig. 2: Three objects from the outdoor
data set with three images each. The
first, fifth and last image of one ap-
proach is displayed. In total there are
50 different objects in the data set. Each
object has 10 approaches from different
object sides and light conditions. Each
approach has 10 sequential images [5].

Let us demonstrate the applicabil-
ity of the DGE approach for a chal-
lenging real-world incremental object
recognition task as investigated in
[5]. The target scenario is an in-
cremental training of a mobile robot
in a garden environment to enable
recognition-dependent behavior. The
training and testing data consists of
50 different objects, each covered by
10 robot approaches (10 images each)
from different sides and light condi-
tions (Fig. 2). The goal is the estima-
tion of the expected recognition per-
formance on unseen test data, based
on the current training state.

Fig. 3 shows for random and ac-
tive learning the comparison between
the ground truth accuracy measured
on unseen test data, the distogram es-
timate (DGE), cross-validation estimation using the training data (cv), and in-
terleaved train/test error (itt). DGE clearly outperforms the baseline methods
with an error of appr. 3%. DGE is especially better in the early stage of training.
The baseline approaches need significantly longer for converging to the ground
truth. Because mainly unconfident samples are requested while querying in ac-
tive learning, the baseline approaches are generally too pessimistic in that case.
DGE can adapt to the different placement of the prototypes.

6 Conclusion

We showed that our DGE method improves prediction of the accuracy of an in-
cremental trained instance-based classifier for both random and active learning.
It seems plausible that data distributions need to be similar for training and
test conditions, excluding strong drift scenarios. It may be possible to extend
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Fig. 3: Evaluation of incremental (left plot) and active sample selection (right
plot). Distogram Estimation outperforms cv and itt.

this idea to other classifiers like support vector machines or neural nets. Our
proposed DGE approach may be very useful in shared human-machine tasks,
where the machine competence can be estimated to control work distribution
between human and machine [13].
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