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Abstract. The Chilean Automatic Supernovae SEarch (CHASE) is a
survey designed to detect early Supernovae. In this paper we explore deep
autoencoders to obtain a compressed latent space for a large transient can-
didate database from the CHASE image difference pipeline. Compared to
conventional methods, the latent variables obtained with variational au-
toencoders preserve more information and are more discriminative towards
real astronomical transients.

1 Introduction

Supernovae (SNe) are the explosive phenomenon that massive stars undergo by
the end of their life time. Some types of SNe are standard candles, i.e. they
always reach the same peak luminosity. Because of this SNe are fundamental in
the measurement of distances in our Universe and have been key for the latest
advances in cosmology [1]. But detecting SNe is not an easy task as large areas
of the sky need to be scanned repeatedly in order to find them.

Several surveys to hunt SNe have been proposed and among them is the
Chilean Automatic Supernovae SEarch (CHASE) [2], a survey with the objec-
tive of detecting SNe from its early moments that has been running since 2007.
CHASE uses the six 40-cm Pancromatic Robotic Optical Monitoring and Po-
larimetry Telescopes (PROMPT) at Cerro Tololo, Chile. CHASE images are
reduced using a custom image-difference pipeline. In summary, every pair of im-
ages are (1) flat-field corrected, (2) astrometric-solution aligned, (3) zero-point
calibrated and (4) subtracted. Pixels of this subtracted image with amplitudes
larger than 5σ are selected as transient candidates and saved for manual in-
spection. Astronomers analyze a region of the sky around these candidates and
discriminate if they correspond to astrophysical transients or artifacts. Fig. 1
shows examples of real and spurious transient candidates obtained by CHASE.

In this work we analyze 19 million CHASE candidates, exploring latent repre-
sentations for which discrimination of real astronomical transients can be done in
a more efficient way. We use novel techniques based on the Variational Autoen-
coder (VAE) and compare with classical methods for latent variable extraction.
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Fig. 1: Examples of CHASE candidates. The first row shows real astrophysical
transients. The second row shows artifacts due to badly subtracted candidates
(II.a and II.b), hot pixels (II.c), and defects in the CCD (II.e) among others.

2 Literature review

The recent advances in artificial neural networks have allowed for the develop-
ment of image classifiers with super-human accuracy that can learn from millions
of examples. In astronomy, convolutional neural networks (CNN) [3] have found
great success in problems such as galaxy classification [4] and transient candi-
date discrimination [5]. On the other hand much less attention has been given
to unsupervised deep architectures, e.g. autoencoders (AE) [6].

The Variational AE (VAE) [7] is a recent development that extends the con-
ventional AE to include a continuous stochastic latent variable layer. Contrary
to the AE, the decoder in the VAE is a generative model, i.e. data x mimicking
the original distribution can be sampled from the latent code z. The proba-
bilistic decoder and encoder are modeled as neural networks pθ(x|z) and qφ(z|x)
with parameters θ and φ, respectively. The VAE is trained by maximizing

L(θ, φ, x(i)) = −DKL

[
qφ(z|x(i))||pθ(z)

]
+ Eqφ(z|x(i))

[
log pθ(x

(i)|z)
]
, (1)

where DKL[·||·] is the Kullback Leibler divergence. Eq. (1) is the variational
or evidence lower bound (ELBO) of the likelihood of sample x(i) [7], and it
can be interpreted as a regularization term plus reconstruction error. To make
computations tractable a multivariate isotropic Gaussian distribution for the
variational posterior is assumed, i.e. qφ(z|x) = N (z|μ, σ2I). For the latent prior
a standard Gaussian is assumed, i.e. pθ(z) = N (z|0, I). Then, reparametrizing
z = μ+ σε, with p(ε) = N (ε|0, I), yields a closed-form expression for Eq. (1)

L(θ, φ, x(i)) ≈ 1

2

J∑
j=1

(1 + log σ2
j − μ2

j − σ2
j ) +

1

L

L∑
k=1

log pθ(x
(i)|z(i,k)), (2)

which can be optimized via gradient descent after sampling L times from p(ε).
The user chooses the distribution of the likelihood pθ(x|z) depending on the
problem. For continuous data an isotropic Gaussian is usually chosen which after
applying the log yields the mean square error (MSE) loss (assuming σ2 = I).
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3 Methods

We study a subset of 19.050.609 CHASE transient candidates, corresponding to
44 observation nights. The candidates are represented as 21 × 21 pixel stamps
centered around a pixel that varied above the 5σ threshold in the difference im-
age. In all experiments we consider a latent dimensionality of 21, i.e. the square
root of the input dimensionality. The stamps are scaled to the range [−1, 1] by
subtracting their median value and dividing by their absolute maximum. The
CHASE subset is divided into training, validation and test sets of equal size.
The autoencoder architectures that we test are described as

1. Sparse convolutional AE (SCAE): The encoder is a CNN with three
convolutional layers (CL) and one fully-connected layer (FCL). Dimensionality is
reduced using strided convolutions instead of pooling layers as this yields simpler
networks with equivalent performance [8]. CLs have 32 filters with size 3×3 and
stride two. The latent layer is a FCL with 21 neurons. The latent layer weights
are regularized by minimizing their �1 norm (λ = 0.005). In this application
regularizing the latent layer is critical to obtain meaningful coding. The decoder
is a mirrored version of the encoder in which upsampling is performed using
nearest neighbors interpolation. All layers use Rectified Linear Units (ReLU)
activations except the latent layer and the decoder output (linear activation).
We found that having linear activations in the latent layer performed better than
ReLU, tanh or sigmoid functions in this setting.

2. Convolutional VAE (CVAE): Uses the same architecture as SCAE
with three exceptions, (1) the encoder has two FCLs with linear activation con-
nected to the last CL to represent μ and log σ2, respectively; (2) it has a sampling
layer before the decoder that draws ε ∼ N (0, I) and compute z = μ+σε; and (3)
�1 regularization of the latent layer is not used as VAE regularizes through the
KL divergence. In this application annealing the regularization term in Eq. (2)
is critical to avoid the trivial solution where the latent codes are ignored. This
occurs because right after initialization the variational posterior carries little in-
formation on the data (reconstruction is poor) and the optimization exploits the
regularization term (codes do not depart from to the prior) [9].

In both architectures: (a) The mean square error is used for the reconstruc-
tion loss, i.e. Gaussian outputs with unit variance are assumed for the decoder.
In this case scaling the data to [0, 1] and using cross-entropy loss, i.e. assum-
ing a Bernoulli output, performs worse. (b) The networks are trained for 500
epochs with mini-batches of size 128. Early-stopping in the validation set is used
to prevent overfitting. (c) Learning and momentum rates are set using Adam
[10] with Nesterov momentum. (d) The tensorflow library is used to train the
models. The implementation can be found at github.com/phuijse/VAE_CHASE.

For reference we perform latent variable extraction using incremental PCA
[11] and online sparse dictionary learning (SDL) [12]. Note that due to the size
of this dataset we are limited to methods that perform updates on mini-batches.

To evaluate the latent spaces we first build a training set of 315 asteroids
by crossmatching the IAU’s minor planet center catalog with the CHASE can-
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didates. Given the characteristics of the CHASE survey the asteroids in the
difference image are equivalent to the stellar transients we search. We find the
candidates that are closest to the training set by measuring Euclidean distances
in the latent space. Then for any given candidate we measure the discrimination
normalized MSE (DNMSE), which is defined as the normalized mean squared
error between the candidate and the asteroids in the input space.

We also evaluate the unsupervised-trained latent codes in a supervised set-
ting using a subset of 20,000 labeled transients. The positive examples were
obtained by augmenting the asteroids through rotations and simulating tran-
sients by inputting point-sources before the difference image procedure. The
negative half was randomly sampled from the CHASE dataset. We train a MLP
with one hidden layer over the latent codes using 15,000 objects and evaluate
the classification performance on the remaining 5,000 objects.

4 Results

Fig. 2a shows the DNMSE of the test-set data. The lower the DNMSE the more
similar the candidates are to the real transients (asteroids set). The DNMSE is
computed for the top candidates in terms of their latent-space distance to the
training set. This experiment shows that the candidates recovered by measuring
distances in SCAE and CVAE latent codes are more similar to real transients
than those recovered by linear methods. Ideally, if two candidates are similar
in latent space they should also be similar in input space, i.e. neighbourhoods
should be preserved, as this facilitates subsequent classification of the samples.

Fig. 2b shows four examples of transient candidate reconstructions using
PCA and CVAE. First and second columns correspond to real transients. Third
and fourth columns correspond to artifacts. This example shows that the ar-
tifacts reconstructed by PCA look similar to actual real transients, i.e. PCA
misses the finer details that characterize them. A large fraction of the candidates
recovered from the PCA/SDL latent codes correspond to poorly-reconstructed
artifacts, which helps to explain the DNMSE difference observed in Fig. 2a.

Fig. 2c shows the ROC curves for the classification of the 5,000 labeled tran-
sient test subset. The best performance is obtained by the classifier trained over
the CVAE, showing the potential of this latent space for transient classification.

Fig. 2d shows the evolution of the cost function of CVAE. The negative
log-likelihood (NLL) and KL divergence correspond to the right-hand and left-
hand side terms of Eq. (2), respectively. If annealing is not used the codes do
not depart from the prior (zero divergence) and a trivial solution is obtained.
Annealing prioritizes the NLL term on early training, allowing the decoder to
learn good reconstructions and avoiding the collapse of the latent codes.

5 Conclusion and Future work

A procedure to obtain compressed latent representations for large databases of
astronomical transient candidates using variational autoencoders has been pre-
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(a) (b)

(c) (d)

Fig. 2: (a) Normalized MSE between candidates and real transients in input
space as a function of how similar they are in latent space. (b) Two real and
two spurious transient candidates reconstructed with PCA and CVAE. (c) ROC
curves of CVAE and other methods for the labeled transient test subset. (d)
Evolution of the cost function of CVAE. When annealing is not used the KL
divergence (dotted) collapses and the likelihood (solid) sets to a local optimum.

sented. The nonlinear latent features (a) retain more information from the data
(better reconstruction), (b) preserve distance relations more faithfully between
latent and input space and (c) allow for the training of more accurate transient
classifiers, with respect to online linear methods. In the near-future we plan to
(1) exploit the latent code uncertainties to improve the classification and (2) use
the VAE generative model to characterize the transient behavior in the data.

In our experiments we noted that annealing the KL divergence was required
in order to learn meaningful latent codes. This ad-hoc solution could be replaced
with a more principled way to regularize the VAE. In the future we will test
tighter bounds for the ELBO and also more flexible posteriors and priors. We
also plan to test if semi-supervision can help in better guiding the optimization.

Previous results have shown that the images from which the difference was
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obtained provide additional information that boost the transient discrimination
capability significantly. We plan to extend the latent variable extraction proce-
dure to tensors containing the difference and its two original components.
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