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Abstract. ALS is a neurodegenerative disease where factors such as
disease progression rate and pattern vary greatly among patients. Since
patient functionality deteriorates over time, we model ALS temporally to
mimic the physician’s reasoning by incorporating old with new information
using a long-short term memory (LSTM) network. We demonstrate that
the LSTM achieves a higher accuracy than a random forest in disease state
prediction, and improves accuracy with data from additional clinic visits.
Being an anytime predictor, our model can help physicians and caregivers
to adjust patients’ treatment and living environment along the disease
period, improving patients’ life quality.

1 Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease,
with no significantly affective therapies. The disease is heterogeneous; its onset
site and progression pattern can differ significantly among patients. Since there
are no specific biomarkers which are good predictors of future disease state or
deterioration rate, physicians cannot assess disease state well at a future time
point. In addition, when running clinical trials in developing therapies, there is
no proper tool that helps in choosing patients with similar deterioration, and
thus a large sample of patients is needed, which raises the trial cost tremendously.

Two major drawbacks of previous models learned by machine learning for
ALS disease state prediction were: (1) Linearity assumption of the disease de-
terioration rate, which cannot express complex deterioration patterns; and (2)
Use of non-temporal models, which cannot fully exploit the richness of the lon-
gitudinal data.

We design and train a temporal model for disease state prediction of ALS
patients using long-short term memory (LSTM) and longitudinal data without
the need to aggregate or drop some of the data. The memory component of the
LSTM exercises the practice of physicians to use past information about a patient
to make more reliable future decisions. We examined the model’s prediction
capabilities when using three months of data regarding patients and predicting
their disease state one year from the baseline. The results show that the LSTM
model outperformed a random forest model. In addition, we examined an online
prediction task: testing the model’s ability to improve prediction when more
data regarding a specific patient is available. The results show that, in many
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cases, the predictions are accurate even in early clinic visits. In other cases,
when the model had less accurate prediction in the early stage, it was able to
improve its prediction as data from additional clinic visits became available.

2 Background

ALS is a fatal idiopathic neurogenerative disease of the human motor system.
It has a highly uncertain pathogenesis whose inner workings and mechanisms
remain unknown, more than a hundred years after its discovery [1, 2]. Known
to be terminal within an average of three to five years from onset, the disease
often takes a mental toll on its patients as well as a physical one [3]. Accurate
prediction of future disease state can help assess disease deterioration, and hence
help in: (1) managing clinical trials, allowing use of a relatively small sample
of patients, since the individual deterioration rate would be well assessed; and
(2) giving the patient and his caregivers a better understanding of his future
condition, allowing necessary preparations of his environment in advance.

The Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT)
[4], which contains over 8,500 unique clinical patient records, was used in this
research. In the database, a patient’s medical condition is evaluated using ALS
functional rating scale (ALSFRS). The ten ALSFRS items describe physical
functionalities of the patient, e.g., breathing, speaking, and walking, each given
a value between 0 for no functionality and 4 for full functionality [5]. A number
of studies have used PRO-ACT and the ALSFRS measure and were focused on
the task of prediction of the disease state or deterioration rate. For example, one
study developed multiple models for different progression rates based on cluster-
ing the patients in the database into groups of faster and slower progressors [6].
After a new patient was grouped into a cluster, his ALSFRS value was predicted
at the stage of 12 months later using a Weibull prediction model associated with
this cluster. Another study performed crowd-sourced analysis of clinical trial
data to predict ALS [7, 8]. Solvers were asked to use three months of clini-
cal trial information to predict the future progression of the disease from the
fourth month to the twelve month. The progression of the disease was assessed
by the slope of change in ALSFRS values, assuming linearity. Four out of the
top six teams employed variants of the random forest [9] approach, which is the
benchmark algorithm for comparison of our model in this study.

The models which were used in previous studies are not temporal. In non-
temporal models, when working with longitudinal data, such as the PRO-ACT,
it is not possible or easy to exploit the data from all time points. Usually, some
of the data are thrown away, aggregated, or partly used. In contrast, a temporal
model that is fully capable of incorporating and utilizing longitudinal data, can
take into account trends in our predictor variables (laboratory test results and
vital signs) and give proper importance to each time point in our prediction. The
relevance of past information to the prediction should dynamically adjust the
algorithm during training according to the level of contribution of this informa-
tion to the prediction. Using data from several clinic visits of a patient from the
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PRO-ACT database and the LSTM [10] algorithm that combines past informa-
tion about this patient with new information, we produced accurate prediction
of the patient’s future state.

3 Architecture and methodology

We examined ALS disease-state prediction using an LSTM-based network. The
target variable is the total sum of the ten ALSFRS functionality values (i.e., an
integer in the range 0–40).

Network architecture. The network includes two layers of LSTM, with 200 hid-
den units each. The output of the second LSTM layer is the input of a neural
network layer, with 200 hidden units, which yields the system output.

Input data. The input data (Table 1) include static variables, i.e., variables
which do not change through time such as onset site and gender, and temporal
variables such as vital signs, forced vital capacity (FVC), and five laboratory
test results, which were chosen based on their contribution for prediction, as
presented in [11]. Only patients with no missing data have been used, 2,850 of
them were used for training and 1,126 for testing.

Our methodology extends previous methodologies for ALS disease state pre-
diction [7, 8] that use the first three months in a patient record for training,
and the one-year ALSFRS value as the target. Instead of using patient repre-
sentation based on only a single observation using specific past visits to predict
disease state in a specific future visit, we created multiple observations, each
referring to a prediction of a different future visit, using different past visits,
and thereby extended the research question of previous studies to that of predic-
tion for multiple time periods. Fig. 1 demonstrates the suggested enrichment:
Fig. 1(a) presents all visits an example training patient has, whereas Fig. 1(b)
demonstrates the previous methodology [7, 8] by which visit 3 (held on day 170
for this patient, after the three-month conventional training period has ended)
does not contribute to the training. Our suggested enrichment methodology,
shown in Fig. 1(c), makes six observations out of the patient record, allowing
the model to use all data, and to learn a more flexible prediction model. Using

this methodology, we are able to create n2−n
2 observations for a training patient

with n visits.

4 Experiment results

Three-months to one-year prediction. The results of using three-months data to
one-year prediction was examined using the LSTM-based model, and the results
are shown in Fig. 2, which presents real vs. predicted ALSFRS values. The
predictions are close to the real values and are not clustered in a certain area in
the graph, meaning that the model is not trying to reduce its error by making
predictions based on common values in the data.
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Table 1: An example for the input data variables for a specific patient. For simplicity,
units of laboratory test results are not specified.

Static variables Temporal variables

ID
Visit’s
No.

Onset
site

... Gender
Days
from

diagnosis

Total
ALSFRS

CK ... FVC

4390 1 Bulbar ... Male 0 35 405 ... 81
4390 2 Bulbar ... Male 34 33 486 ... 79
... ... ... ... ... ... ... ... ... ...

4390 12 Bulbar ... Male 552 25 1096 ... 51

Fig. 1: (a) All documented visits for an example patient, (b) the training observa-
tion which is derived from the three-months to one-year prediction task, and (c) the
suggested enrichment methodology

Table 2 presents result comparison of the LSTM-based model with a state-
of-the-art prediction model, random forest (RF). RF is not a temporal model,
but it was widely used in previous ALS machine learning competition [7, 8] and
research. Three measures were used for evaluating the models’ performance: (1)
Root mean square error (RMSE), (2) Pearson’s correlation coefficient1 (PCC),
and (3) Concordance index2 (CI). The values in the table are the mean results of
a 10-fold CV experiment. The LSTM-based model outperformed the RF model
in all measures. All differences are significant (with a p-value lower than 0.001).

1Measures the correlation between the predictions vector and the real values vector. Should
be maximized.

2The fraction of pairs in the test data, where the observation with the higher documented
ALSFRS has the higher predicted ALSFRS. Should be maximized.
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Fig. 2: ALSFRS predicted vs. real values
for an LSTM-based model in a three-month
to one-year prediction scenario.

Model RMSE PCC CI
LSTM 4.202 0.742 0.724
RF 4.488 0.720 0.715

Table 2: Model comparison. Bold val-
ues represent outperformance.

Individual online prediction. The LSTM-based model can be used for indi-
vidualized short-term (days or tens of days) and long-term (hundreds of days)
predictions, due to our enrichment methodology. Fig. 3 shows the model’s pre-
dictions for three arbitrary patients using only data of the first visit of each
patient. In these cases, the model is able to make accurate short-term and long-
term predictions. Not in all cases were predictions accurate starting from the
first visit, but due to the temporal nature of the model, predictions can improve
as more data regarding a patient are available. Fig. 4 demonstrates an online
prediction for an arbitrary patient. In the first visit, the predictions were not
accurate. As more data were available, starting from visit 2, the model was
able to improve the predictions. This example illustrates a great advantage of
temporal modeling since the model is able to be adjusted in real time.

Fig. 3: Prediction of the disease trajectory for three arbitrary patients from the test
set. Red dots are real ALSFRS observations, the black line is the predicted trajectory,
and the blue band is an interval representing a deviation of 5% of the maximum value
(of 40) of the ALSFRS. The vertical dashed line corresponds to the time of prediction
in days (detailed in the graph title), such that any observation made after the line was
unavailable to the model at prediction time.

5 Discussion

In this paper, we proposed a temporal model based on an LSTM network, which
is well-suited for analyzing the longitudinal data in ALS. This analysis demon-
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Fig. 4: Online prediction for a random patient from the test se of the disease trajectory
through different time points.

strates the potential of implementing fully temporal techniques in modeling the
disease. Our experiments demonstrate the benefits in this model as a state-of-
the-art predictor. The temporal nature of the model allows online prediction to
be made, by integrating new data in the model anytime it is available.

The model’s capabilities can be used for several applications. It can be used
by patients and caregivers for a better understanding of the disease progression
pattern and making the necessary arrangements to meet disease deterioration.
In addition, it can help in managing clinical trials by allowing patients with
similar deterioration rates to be chosen and, by that, to decrease the sample size
needed for trials and thereby the trial’s cost. Also, accurate prediction of the
disease state is important for fitting personalized medicine to patients.
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