
Local Rademacher Complexity Machine

Luca Oneto1, Sandro Ridella2, and Davide Anguita1

1 - DIBRIS - University of Genova
Via Opera Pia 13, I-16145 Genova - Italy

2 - DITEN - University of Genova
Via Opera Pia 11A, I-16145 Genova - Italy

Abstract. In this paper we present the Local Rademacher Complex-
ity Machine, a transposition of the Local Rademacher Complexity Theory
into a learning algorithm. By exploiting a series of real world small-sample
datasets, we show the advantages of our proposal with respect to the Sup-
port Vector Machines, i.e. the transposition of the milestone results of V.
N. Vapnik and A. Chervonenkis into a learning algorithm.

1 Introduction

Support Vector Machines (SVMs) are a state-of-the-art and powerful learning
algorithm that can effectively solve many real world problems [1, 2]. SVMs are
the transposition of the Vapnik-Chervonenkis (VC) Theory [3] into a learning
algorithm which optimizes the trade-off between accuracy and complexity of the
learned model [4].

VC Theory was later improved by the Rademacher Complexity (RC) Theory
[5, 6], but the real breakthrough was made with the Local RC (LRC) Theory
[7, 8]. In fact, LRC was able, for the first time, to avoid taking into account the
functions with high empirical error when measuring the complexity of a learned
model.

LRC is a quite powerful tool for getting a deeper understanding of the learn-
ing process. In fact, authors have shown that RC and LRC can be effectively
used for Model Selection purposes in many different applications (e.g. small
sample problems [9], resource limited models [10], graph kernel learning [11],
and multiple kernel learning [12]). Nevertheless, to the best knowledge of the
authors, no one has tried to develop a learning algorithm based on the the LRC
Theory.

For this reason, inspired by the SVMs, we proposed in this paper the Lo-
cal Rademacher Complexity Machine (LRCM), a transposition of the Local
Rademacher Complexity Theory into a learning algorithm which improves, from
a theoretical point of view, the properties of the original SVMs by including
the new intuition behind LRC. In fact, our proposal is able, as the SVMs, to
generate both linear and nonlinear models by exploiting the kernel trick [13].
Moreover, LRCM introduces a new regularization term which is able to penal-
ize the function with small error on the available data but also small error on a
random labeled sample, by implementing the same idea behind the LRC Theory.

Since RC and LRC have shown to be a good option for model selection pur-
poses, particularly in the small-sample setting, we make use of several Human
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Gene Expression datasets in order to test if the proposed LRCM improves over
the state-of-the-art SVMs algorithms. Results show that LRCM is able to im-
prove, in a statistical relevant way, the accuracy with respect to the SVMs in
this setting.

2 Local Rademacher Complexity Theory

We consider the conventional binary classification problem [3]: based on a ran-
dom observation of x ∈ X ∈ Rd, one has to estimate y ∈ Y ⊆ {±1} by choosing a
suitable hypothesis h : X → Ŷ, where h ∈ H. A learning algorithm selects h ∈ H
by exploiting a set of labeled samples Dn : {(x1, y1) , · · · , (xn, yn)}. Dn consists
of a sequence of independent samples distributed according to µ over X×Y. The
generalization error L(h) = E(x,y)`(h(x), y), associated to an hypothesis h ∈ H,

is defined through a loss function ` : Ŷ ×Y → [0, 1]. As µ is unknown, L(h) can-
not be explicitly computed, but we can compute the empirical error, namely the
empirical estimator of the generalization error L̂yn(h) = 1/n

∑n
i=1 ` (h (xi) , yi).

The purpose of any learning procedure is to select a model h with small L(h)
and consequently to estimate it. Different alternatives exist in order to perform
this task. The original milestone result was the VC-Theory [3, 14], which has
been later improved by the RC-Theory [5, 6]. VC and RC Theories state that
with probability (1− δ) and ∀h∗ ∈ H

L(h∗) ≤ L̂yn(h∗) + C(H) + φ1(n, δ), (1)

where φ1(n, δ) is a confidence term and C(H) is the complexity of H measured
with the VC-Dimension or the RC. SVMs, one of the state-of-the-art learning
algorithms [2], are the transposition of Eq. (1) [3]. In fact SVMs search for the
h which minimizes the trade-off between accuracy L̂yn(h∗) and complexity C(H)
or, in other words, the estimated generalization error. The real breakthrough,
with respect to Eq. (1) was made with the LRC-Theory [7, 8] which was able
to take into account just the function in H with small error for estimating the
complexity of H.

In order to present the LRC-Theory we have to define the RC [5] R̂n(H) =
suph∈H 2/n

∑n
i=1 σi` (h (xi) , yi), where σ1, . . . , σn are n {±1}-valued indepen-

dent Rademacher random variables for which P(σi = +1) = P(σi = −1) = 1/2
and the deterministic counterpart of R̂n(H) isRn(H) = Eσ1,··· ,σn

Ex1,··· ,xn
R̂n(H).

Note that, the empirical RC is usually defined as Eσ1,··· ,σn
R̂n(H) in order to im-

prove the constants in the generalization bounds. In this paper, instead, since
we want to define a learning algorithm, the constants are not important. The
important aspect, instead, is the computational requirement needed for com-
puting the generalization bound and to keep it as limited as possible. Note also
that, if `(h(x), y) can be expressed as `(h(x), y) = 1− y h(x)/2 then R̂n(H) can be

reformulated as [6] R̂n(H) = suph∈H

[
1− 2L̂σn(h)

]
, which basically means that

a space of hypothesis is small when it not able to fit random labels.
Based on the previous definitions it is possible to recall the main result of

the LRC-Theory which bounds the generalization error in terms of just empirical
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quantities. In particular, it is possible to state that with probability (1− δ) and
∀h∗ ∈ H

L(h∗) ≤ L̂yn(h∗) + suph∈{h: h∈H,L̂y
n(h)≤L̂y

n(h∗)+ĉ∗}
[
1− 2L̂σn(h)

]
+ φ2(n, δ), (2)

where φ2(n, δ) is a confidence term and c∗ ≥ 0 is a quantity that can be computed
from the data, one can refer to [5, 6] for more details. Eq. (2), with respect to Eq.
(1), shows that an optimal model should not be just the result of a compromise
between the accuracy of that model and the complexity of the space of models
from where the model has been chosen. Eq. (2) states that, among the models
with small empirical error, the functions which perform badly on random labels
should be preferred.

Note also that Eqns. (1) and (2) have been successfully exploited in the past
for model selection purposes, particularly on small sample problems [9, 10]. For
this reason, in the next section, similarly to what has been done with Eq. (1) for
SVMs, we will build a learning algorithm from Eq. (2) called Local Rademacher
Complexity Machine, which tries to take advantage of the improvements of Eq.
(2) over Eq. (1).

3 Local Rademacher Complexity Machine

Let us consider the same framework of SVMs [3, 4] where f(x) = wTx + b
and H is defined as w : w ∈ Rd, ‖w‖ ≤ A ∈ [0,∞), and b ∈ R. Since we are
dealing with binary classification problems the Hard loss function `H(f(x), y) =
1− y sign[f(x)]/2 should be adopted. Unfortunately `H is not convex, then, in
SVMs, the Hinge loss function `ξ(f(x), y) = max[0, 1− yf(x)], the simplest yet
effective convex upper bound of `H [15], is exploited.

Then, by following Eq. (1), and noting that C(H) ∝ ‖w‖ [3, 5], we obtain
the SVMs learning algorithm

minw,b 1/2‖w‖2 + C
∑n
i=1 max[0, 1− yif(xi)], (3)

where C ∈ (0,∞) balances the trade-off between accuracy and complexity. Note
that Problem (3) is convex and can be written in its dual form

minα 1/2αTQα− 1Tα, s.t. yTα = 0, 0 ≤ α ≤ C (4)

where α ∈ Rn, v ∈ {v}n with v ∈ R, yT = [y1, · · · , yn], Qi,j = yiyjx
T
i xj ,

w =
∑n
i=1 αiyixi, and b is the Lagrange multiplier of the equality constraint

in Problem (4). Problem (4) also allows to exploit the kernel trick [13] and
implement nonlinear models.

Eq. (2) adds a more profound intuition with respect to Eq. (1) by stating
that we should not look at the complexity of the entire space H but we should
look just to a subset of the h ∈ H with small error. Eq. (2) also gives us
a way to perform this measurement: we have to check how the functions with
small error behave when the labels are randomly switched. If the chosen function
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behaves badly on random noise probably it is a function with good generalization
properties.

Analogously to Eq. (3), which is based on Eq. (1), the LRCM, based on Eq.
(2), can be defined

minw,b 1/2‖w‖2+C1

∑n
i=1 max[0, 1−yif(xi)]+C2

∑n
i=1 max[0, 1+σif(xi)]. (5)

In fact, in Problem (5), we are minimizing the error over the data, measured with
the Hinge loss function, and contemporary we are balancing the complexity of
the solution measured with ‖w‖2, but the complexity is computed by taking into
account only the functions with high error over the random labels σ1, · · · , σn. In
fact, when C1 ∈ (0,∞) is small we force the solution to fit the available data with
simple functions (small ‖w‖2). Moreover, when C2 ∈ (0,∞) is large we force also
the solution to make a high error over the σi since

∑n
i=1 max[0, 1 + σif(xi)] =

`ξ(f(xi), σi · −1). Note that the term
∑n
i=1 max[0, 1+σif(xi)] acts also as a

random regularizer analogously to the dropout in neural networks [16]. In order
to reduce the probability of unlucky realization of the σi with i ∈ {1, · · · , n}
we will exploit the proposal described in [17] to use the Nearly Homogeneous
Multi-Partitioning technique developed in [18]. The idea is to split the original
dataset in two almost homogeneous subsets and assign to each of the two sets two
different labels. This is an heuristic method to assign to the available samples the
noisiest possible labels. In this way, the term

∑n
i=1 max[0, 1+σif(xi)], measures

the capacity of the function to underfit the noisiest possible configuration of the
labels.

Finally, note that Problem (5) is convex and we can compute its dual formu-
lation

min
α

1

2

[
α
β

]T[
Qy Qy,σ

Qσ,y Qσ

][
α
β

]
−
[
1
1

]T[
α
β

]
, s.t.

[
α
β

]T[
y
-σ

]
=0,

[
0
0

]
≤
[
α
β

]
≤
[
C1

C2

]
(6)

where Qyi,j = yiyjx
T
i xj , Q

σ
i,j = σiσjx

T
i xj , Q

y,σ
i,j = −yiσjxTi xj , Qσ,y = (Qy,σ)T ,

w =
∑n
i=1 αiyixi+

∑n
i=1 βiσixi, and b is the Lagrange multiplier of the equality

constraint in Problem (6) which can be easily solved with the standard SVMs
solvers [19]. Problem (6) allows, analogously to Problem (4) to exploit the kernel
trick [13] and implement also nonlinear models.

4 Results and Discussion

In order to verify whether the LRCM allows to improve over the performance
of the SVMs in the small–sample setting, we make use of several Human Gene
Expression datasets, the same exploited in [9] (see Table 1). Since some of these
datasets are multi-class problems, analogously to [9], we map the multi-class into
two-class problems according to the description of Table 1.

As in this kind of setting a reference set of reasonable size is not avail-
able for evaluating the performance of the entire procedure, we reproduce the
methodology suggested by [20], which consists in generating five different train-
ing/test pairs using a random sampling approach. Then the training set has
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Id Dataset d n Class +1 Class −1

D01 Brain Tumor 1 5920 90 Medulloblastoma Malignant glioma, AT/RT, Nor-
mal cerebellum, and PNET

D02 Brain Tumor 2 10367 50 Classic Glioblastomas and
Anaplastic Oligodendrogliomas

Non-classic Glioblastomas and
Anaplastic Oligodendrogliomas

D03 Colon Cancer 1 22283 47 Already two-class

D04 Colon Cancer 2 2000 62 Already two-class

D05 DLBCL 5469 77 Already two-class

D06 Duke Breast Cancer 7129 44 Already two-class

D07 Leukemia 7129 72 Already two-class

D08 Leukemia 1 5327 72 ALL B-cell ALL T-cell and AML

D09 Leukemia 2 11225 72 ALL AML and MLL

D10 Lung Cancer 12600 203 Adeno Normal, Squamous, COID, and
SMCL

D11 Myeloma 28032 105 Already two-class

D12 Prostate Tumor 10509 102 Already two-class

D13 SRBCT 2308 83 EWS RMS, BL, and NB

Table 1: Human Gene Expression datasets (see [9] for details): mapping of the
multi-class into two-class problems.

Dataset D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12 D13 # Wins

SVM

5.4 0.0 5.0 4.0 5.4 5.0 5.0 8.2 8.0 14.4 6.8 6.6 6.6

3± ± ± ± ± ± ± ± ± ± ± ± ±
0.3 0.0 0.2 1.0 0.3 0.2 0.0 0.2 0.0 0.3 0.2 0.2 0.2

LRCM

4.2 0.0 4.1 3.7 4.3 3.9 4.1 8.7 6.8 10.1 6.8 5.9 6.2

12± ± ± ± ± ± ± ± ± ± ± ± ±
0.1 0.0 0.1 0.2 0.3 0.1 0.1 0.4 0.1 0.3 0.1 0.2 0.2

Table 2: Human Gene Expression datasets (see Table 1): average number of
errors on the test sets performed by SVM and LRCM.

been used both for training the model and for model selection purposes by ex-
ploiting the 10-fold cross validation model selection procedure. Since in our
case d � n, a nonlinear formulation is generally not needed and consequently
a linear SVM and LRCM is exploited. For SVM we searched for the best
C ∈ {10−6, 10−5.8, · · · , 104}. For LRCM we searched for the best C1, C2 in
the same range.

In Table 2, we present the average number of errors, performed on the five
test set replicas. In particular, we compare the results obtained with SVM and
LRCM. From the results of Table 2 it is possible to note how LRCM outperforms
SVM in most of the datasets in a statistical relevant way (since in the table it
is reported the t-student confidence interval at 95%). Moreover, when LRCM
does not outperform SVM, they both perform comparably. The only exception
is the Leukemia 1 dataset, where SVM outperforms LRCM.

The present work shows for the first time that the LRC Theory, as the VC
one, can be used to inspire a new learning algorithm. The presented approach
is surely a preliminary tentative which needs to be extended by taking care of
two main aspects. The first one is to try to check the performance of LRCM
on medium and large datasets in order to check its performance on a setting
which is different from the small sample one. The second problem is to test
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the effectiveness of LRCM in non-linear problems when the kernel trick needs
to be exploited. Nevertheless, these preliminary results shows the potentiality
of LRCM and its effectiveness in the small-sample setting and confirm that
the statistical learning theory can be an effective tool both for model selection
purposes, as proved in previous work, and for inspiring new learning algorithms.
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