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Abstract. Clinical measurements collected over time are naturally rep-
resented as multivariate time series (MTS), which often contain missing
data. An autoencoder can learn low dimensional vectorial representations
of MTS that preserve important data characteristics, but cannot deal ex-
plicitly with missing data. In this work, we propose a new framework that
combines an autoencoder with the Time series Cluster Kernel (TCK), a
kernel that accounts for missingness patterns in MTS. Via kernel align-
ment, we incorporate TCK in the autoencoder to improve the learned
representations in presence of missing data. We consider a classification
problem of MTS with missing values, representing blood samples of pa-
tients with surgical site infection. With our approach, rather than with
a standard autoencoder, we learn representations in low dimensions that
can be classified better.

1 Introduction

The application of machine learning and deep learning in healthcare industry
is improving diagnosis outcomes and may change the way of providing care
to patients [I]. The main challenge that machine learning is asked to solve is
to discover relevant structural patterns in clinical data, usually concealed and
difficult to detect manually.

An important fraction of electronic health records are clinical measurements
collected from patients over time, which are represented as multivariate time
series (MTS) [2]. Several efforts have been devoted to learn informative and
compact representations of MTS [3], not only to improve the quality of the anal-
ysis, but also to manage the large amounts of data necessary to train deep learn-
ing models [4]. Furthermore, MTS are characterized by complex relationships
across the variables and time that must be accounted in the analysis. However,
most methods are designed to treat vectorial data and they cannot be trivially
extended to capture such relationships.

The autoencoder (AE) is a type of neural network originally conceived as
a non-linear dimensionality reduction algorithm [5], which has been further ex-
ploited to learn data representations in deep architectures [6]. AEs have been
adopted to map time series data into codes, which are real-typed vectors lying
in a lower dimensional space [7].

Clinical measurements are often recorded at irregular frequencies that change
for different patients, across variables, and over time. Hence, after discretizing
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time, the resulting MTS end up containing missing values [§]. Missing values
follow patterns that reflect medical conditions of the patients or decisions of
the doctors and, therefore, are important to be included in the analysis. Since
AFE cannot process data containing missing values, those are usually replaced
with imputation techniques that, however, cannot capture those patterns as
they only fill blanks trying to introduce as less bias as possible. On the other
hand, a recently proposed method, called Time series Cluster Kernel (TCK) [9],
computes an unsupervised kernel similarity between MTS with missing data.
TCK leverages on the configurations of missingness patterns to improve the
evaluation of the similarity.

In this work, we propose a completely unsupervised approach for learning
compressed representations of MTS in presence of missing data. Towards that
end, we utilize the deep kernelized autoencoder (dkAE) [I0], a recently proposed
architecture that embeds the properties of a given prior kernel in the code rep-
resentation of an AE through kernel alignment. By introducing TCK as prior
kernel, we extend the dkAFE framework to time series. Moreover, due TCK’s
properties, the relationships among the learned codes accounts for the presence
of missing data, yielding a more discriminative representation of the data.

We apply our method to classify MTS of blood samples, relative to patients
with site infections contracted after surgery and with a high percentage of miss-
ing data. We compare the classification results obtained on the representations
learned by a standard AE with the ones of a dkAE implementing the alignment
to TCK. Results indicate that the learned codes not only provide a compact
vectorial representation, but the same classifier achieves better results when op-
erates in our code space rather than in the input space.

2 Methods

2.1 Time series Cluster Kernel

The Time series Cluster Kernel [9] exploits the missing patterns in MTS to com-
pute their similarities, rather than relying on imputation methods that may in-
troduce strong biases. TCK implements an ensemble learning approach wherein
the robustness to hyperparameters is ensured by joining the clustering results
of many Gaussian mixture models (GMM) to form the final kernel. Hence, no
critical hyperparameters must be tuned by the user.

To deal with missing data, the GMMs are extended using informative prior
distributions [II]. The TCK matrix is built by fitting GMMs to the set of time
series for a range of numbers of mixture components, to provide partitions with
different resolutions that capture both local and global structures in the data.
To enhance diversity in the ensemble, each partition is evaluated on a random
subset of attributes and segments, using random initializations and randomly
chosen hyperparameters. This also provides robustness in the hyperparameters
selection. TCK is then built by summing (for each partition) the inner products
between pairs of posterior distributions corresponding to different MTS.
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2.2 Autoencoder

AEs simultaneously learn two functions. The first one, encoder, provides a map-
ping from an input domain, X, to a code domain, C, i.e., the hidden representa-
tion. The second function, decoder, maps from C back to X'. In AEs with a single
hidden layer, the encoding and decoding function are ¢ = ¢(Wgx + bg) and
% = (Wpc + bp), where x, ¢, and X denote, respectively, a sample from the
input space, its hidden representation (the code), and its reconstruction. While
@(+) is usually implemented as a sigmoid, in the case inputs are real-valued vec-
tors, the squashing nonlinearity in ¢(-) can be replaced by a linear activation.
Finally, Wg and Wp are the weights and bg and bp the bias of the encoder
and decoder, respectively.

To minimize the discrepancy between the input and its reconstruction, model
parameters are learned by minimizing a reconstruction loss

Lr(xai) :E{HX7}~(”2} . (1>

By stacking more hidden layers an AE is capable of learning more complex
representations by transforming inputs through multiple nonlinear transforma-
tions. In its native formulation, an AE can process vectorial data and, therefore,
a MTS is flattened into a uni-dimensional vector when fed to the AE. Since an
AF processes inputs of same lengths, missing are filled with numeric values.

2.3 Deep Kernelized Autoencoder
A dkAE is trained by minimizing the loss function
L= (1 - )‘)Lr(x7 i) + )\LC(Ca K)a (2)

where L,(-,-) is the reconstruction loss in Eq. [1] and A is a hyperparameter
that balances the contribution of the two cost terms. If A = 0, L becomes the
traditional AE loss in Eq. L.(-,-) is the code loss that enforces similarity
between two matrices: K € RVY*N | the kernel matrix given as prior, and C €
RNXN " the inner product matrix of codes associated to input data (N is the
number of samples in the dataset). A depiction of the training procedure is
reported in Fig.

L.(-,-) can be implemented as the normalized Frobenius distance between C
and K. Each matrix element C;; in C is given by Cj; = ¢(x;) - ¢(x;) and the
code loss reads
C K

L.(C,K) = —
(CK)=Telr ~ K-

3)

F

By minimizing the normalized Frobenius distance from TCK, we indirectly
include in the codes the information it captures about the missingness patterns
and we improve the quality of the learned codes in presence of missing data.

The dkAE model is trained using mini-batches. Therefore, a training matrix
C,, is generated from the codes associated to the elements in the mth mini-batch
and distance L. is computed on the submatrix of K related to the entries in the
mini-batch m.
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3 Experiments

We analyze blood measurements collected from patients undergoing a gastroin-
testinal surgery at University Hospital of North Norway in the years 2004-2012.
Each patient in the dataset is represented by a MTS of blood samples extracted
within 20 days after surgery. The MTS contain measurements of 10 variables,
which are alanine aminotransferase, albumin and alkaline phosphatase, creati-
nine, CRP, hemoglobine, leukocytes, potassium, sodium and thrombocytes. We
focus on a cohort of two classes of patients: the ones with and without surgical
site infections. Dataset labels are assigned according to International Classifica-
tion of Diseases and NOMESCO Classification of Surgical Procedures, relative
to patients with severe postoperative complications.

Missing data in MTS correspond to measurements that are not collected for
a given patient in one day of the observation period. Patients with less than
two measurements are excluded from the cohort. We ended up with 883 MTS,
of which 232 are patients with infections. The first 80% of the datasets is used
as training set and the rest as test set.

The dataset, the code implementing all the methods described in this paper,
and a detailed description of experimental setup are publicly availableﬂ

3.1 Results

To evaluate the effect of the alignment with TCK kernel, we compare the clas-
sification results obtained on the codes learned by standard AE and dkAE.
Missing values are filled with three different imputation techniques: zero im-
putation (AE-z and dkAE-z), mean imputation (AE-m and dkAE-m) and last-
value-carried-forward imputation (AE-1 and dkAE-1). The codes are classified
by a k-NN with k& = 3 equipped with Euclidean distance. We also consider the
results yielded in the input space by a kNN with TCK similarity (TCK-i).

In Tab. |If we report the mean and standard deviation of F1 score and area
under the ROC curve (AUC) of the test set in 10 independent runs. For AE
and dkAE we also report the mean squared error (MSE) between the encoder
input and the decoder output. A low MSE of the reconstruction does not only

Thttps://github.com/FilippoMB/TCK_AE
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guarantee to learn a better representation of the input, but it implies an accurate
back-mapping from code to input space. In both AE without kernel alignment
and dkAE with zero imputation and last-value-carried-forward we obtain the
best and worst classification performance, respectively.

For each imputation method, codes learned by dkAE are classified more accu-
rately and the reconstruction error does not increase even if the codes are aligned
with the prior kernel. This demonstrate the importance of embedding into the
codes the similarity information yielded by TCK, which captures missingness
patterns. Indeed, those patterns are ignored if one relies solely on imputation,
whose purpose is to fill missing entries introducing as less bias as possible. It is
interesting to notice that the classification in the input space based on TCK sim-
ilarity is slightly less accurate than the classification in the code space of dkAE.
Therefore, dkAE not only yields codes of reduced dimensionality that can be
handled more easily and processed faster, but they are discriminated easier than
the inputs themselves from a simple classifier.

Table 1. Reconstruction MSE and

MEthOd‘ MSE F1 AUC classification results of the codes
AE-z 0.1034+0.002 0.654+0.028 0.751+0.018  learned by AE and dkAE. We also
dkAE-z | 0.0960.001 0.74840.017 0.813+0.011 report the Clas?‘ﬁc?é’f; resu,lts,lm the
AE-nm 0.094-0.003 0.569-0.035 0.7034-0.02 mli’st;ga;‘f d“ZfiE e afpf;nz‘h??ety'
dkAE-m  |0.09140.001 0.690-£0.029 0.773-0.018 different imputations: zero
AE-1 0.136:£0.002 0.66240.010 0.764+0.006  ipputation (), mean imputation (m)
dkAE-1 | 0.128:0.000 0.6784£0.026 0.763£0.016  and last value carried forward (1).
TCK-1i - 0.6984+0.021 0.776+0.012  Best results are highlighted in bold.

In Fig. 2| we visualize the first two PCA components of the test set, both in
input and in the code spaces. We compute a linear PCA on the codes and on
the TCK kernel matrix (this corresponds to compute kernel PCA in the input
space using TCK as kernel). Coloring depends on the ground truth label and
we observe the two classes to be better separated in the code space of dKAE.
Interestingly, in dkAE we notice the same structure yield by kPCA in the input
space with TCK as kernel. This demonstrate how the kernel alignment procedure
successfully embed in the codes the properties of TCK, without compromising
the precision of the decoder reconstruction. We underline that by using an AE
rather than kPCA we avoid performing a costly eigendecomposition and we also
learn the inverse mapping from the code to the input space, provided by the
decoder.

4 Conclusions

In this paper, we proposed a novel approach for learning compressed vecto-
rial representations of MTS with missing values, which are common in clinical
records. This is achieved by combining a deep kernelized Autoencoder with
TCK, a similarity measure for MTS that accounts for missing values. We tackled
the classification of blood samples from patients with postoperative infections,
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Fig. 2. Projection of test set on the first two PCA components using (i) kPCA on the input
space, (ii) PCA on AE code space, and (iii) PCA on dkAE code space. Yellow dots and red
triangles represent infected and non-infected patients respectively.

where data are MTS with a high percentage of missing data. Our results showed
that by aligning the codes in the AE to TCK kernel matrix, we embed into the
representation important information relative to patterns of missingness in the
data and improve the classification outcome.
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