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Abstract. In the Big Data era new challenges have arisen in machine
learning related with the Volume (high number of samples or variables),
the Velocity, etc. making many of the classic and brilliant methods not
applicable. One main concern derives from Privacy issues when data is
distributed and cannot be shared among locations. Herein, we present
LANN-DSVD a non iterative algorithm for One-Layer Neural Networks
that allows distributed learning guaranteeing privacy. Moreover, it is non
iterative, parameter-free and provides incremental learning, thus making
it very suitable to manage huge and/or continuous data. Results demon-
strate its competitiveness both in efficiency and efficacy.

1 Introduction

Over recent years, with the appearance of new possibilities such us the Internet
of Things, new challenges have arisen for the machine learning field. The more
obvious challenge is related to the scalability and efficiency of machine learn-
ing algorithms and its ability to deal with huge datasets. However, some other
interesting challenges arise related to certain external restrictions that those al-
gorithms must accomplish as imposed by the conditions under which data is
available for training. One of these conditions occurs when data is distributed.
In order to overcome the issue of learning from distributed data, one could think
on the simple solution of gathering data at a single location. However, this
solution can be unrealistic or ineffective: the total storage capacity needed to
store a single big dataset might not be affordable or the spatial complexity of
the algorithms could impede to process the whole training dataset due to time
or memory restrictions. Moreover, the necessary bandwidth to efficiently trans-
mit the data to a single location might not be available: the Velocity of data,
one of the “V” big data properties, could cause to have frequently updated
databases and the required communication could be a continuous unmanage-
able overhead. In addition, even when communication cost was not too high
or the spatial complexity was not a problem, it is every day more often the
case that sensitive data cannot be moved around distributed locations due to
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privacy issues. In all these cases, distributed learning is the perfect solution,
as it is a natural way of scaling up learning algorithms and to deal with natu-
ral distributed data, and thus it has become an active and promising research
line for big data learning. Moreover, the popularization of multicore processors
and computer clusters leaded to a suitable context for the appearance of new
distributed algorithms [1]. Nevertheless, most of them are focused only on ex-
ploiting parallel processing in order to speed up learning or overcome overflow
memory problems. Very often they do not take into account issues related to
naturally distributed data and, more specifically, to the management of sensitive
data through privacy-preserving learning. As a consequence, they work by mov-
ing data between locations during learning to obtain the final aggregate model.
However, in many applications domains, data might belong to different, perhaps
competing, organizations that want to exchange knowledge and share the ben-
efit of a machine-learning model that aggregates all their data but without the
need of exchanging raw private data among them [1, 2]. In this paper, we focus
our attention on this specific context, in which distributed data is not allowed
to be moved between locations, to propose a new privacy-preserving distributed
learning algorithm: LANN-DSVD. This algorithm is based on the LANN-SVD
algorithm [3][4], a previous contribution of the authors. The cornerstone of this
method is its mathematical formulation that makes the optimization problem
separable, thus allowing to learn in parallel from each partition.

The paper is structured as follows: Section 2 describes the proposed dis-
tributed learning algorithm and the background needed for comprehension, Sec-
tion 3 presents the experimental results that demonstrate its learning accuracy,
and Section 4 includes conclusions.

2 LANN-DSVD

In our context of interest, we can define a distributed computing environment
as a set of locations physically separated but probably connected by a commu-
nication network. In this context, a common strategy to obtain a valid machine
learning model is local learning and further model integration. LANN-DSVD
takes advantage of this learning paradigm, avoiding moving raw data across the
locations and thus allowing privacy-preserving learning as well as minimizing
communications, as it is described below.

2.1 Local learning

When working with large datasets, it is essential to employ low complexity al-
gorithms due to time and memory restrictions. Moreover, in this context, local
models must allow to be integrated somehow to obtain the final model. With this
conditions in mind, as local learners we employ single-layer (no hidden layers)
Artificial Neural Networks (ANN) trained with LANN-SVD [3][4]. This a very
efficient learning algorithm as it computes the weights of the network analyti-
cally and also it is able to learn in an incremental, and hence distributed, way.
Consider a single-layer ANN. For the sake of comprehension, in what follows,
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we will consider only one output. The equation relating the inputs X ∈ Rm×n

and outputs y ∈ Rn×1 is given by:

y = f(XTw)

f being the nonlinear activation function of the neurons and w the weights. Let
d ∈ Rn×1 be the vector with the desired outputs for training. Assuming that f is
invertible, instead of computing the error at the output of the network between
y and d, LANN-SVD minimizes the mean-squared-error before f , i.e. between
XTw and d̄ = f−1(d). This error function does not contain local minima and
its global solution for w can be obtained very efficiently by solving a system of
linear equations defined by:

XFFXTw = XFFd̄ (1)

F = diag(f ′(d̄1), f ′(d̄2), . . . , f ′(d̄n)) being a diagonal matrix formed by the
derivative of the f function in the components of the d̄ vector. Using the Singu-
lar Value Decomposition (SVD) of XF = USVT and after some transformations
[3] an equivalent expression is obtained to calculate the optimal weights:

w ≈ U(SST )†UTXFFd̄ (2)

where † stands for the Moore-Penrose pseudoinverse. The advantage is that
the size of the system of linear equations in (2) depends on r ≤ min(m,n)
and, therefore, the computational complexity of this calculation relies on the
smaller value between the number of data n and the number of variables m of
the problem making the training algorithm suitable for both situations.

2.2 Model integration

In this section, we describe the proposed algorithm LANN-DSVD (Linear learn-
ing algorithm for Artificial Neural Networks by Distributed Single Value De-
composition). Suppose we have K locations. Once classifiers are trained on
their corresponding (local) subset of data Xk; k = 1 . . .K, the aim is to in-
tegrate these local models using some combination method to obtain a single
(global) ANN representing the union of knowledge stored distributively. This
can be achieved if we can obtain, from the corresponding local elements, the el-
ements implied in Equation 2 as if they were calculated using the entire dataset
X = [X1|X2| . . . |XK ].

The solution can be found by identifying two different parts in the right hand
side of Equation 2. The first part U(SST )†UT depends on matrices S and U
obtained from the SVD of matrix XF which ideally would contain information
on the entire data set. At each location we have already computed the SVD of
XkFk = UkSkVT

k ; k = 1, . . . ,K (the calculation of matrix Vk can be avoided
as it is not needed). Using the results by Iwen at al. [5] we can calculate the
terms U and S corresponding to SVD of the global XF matrix from the local
results as SV D(XF) = SV D([U1S1|U2S2| . . . |UKSK ]).
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The second part of Equation (2), XFFd̄, can also be obtained from local cal-
culations. As can be demonstrated [4], this term can be calculated incrementally
as XFFd̄ = M1 + M2 + . . . + MK where Mk = XkFkFkd̄k.

Putting the above results together, to obtain the global optimal weights
w only local matrices Uk, Sk and Mk are needed. Therefore, no raw data
is transmitted among locations thus guaranteeing privacy. In the interest of
reproducible research the Matlab code is available at http://mloss.org/software/.

3 Experimental Results

In this section, we present some results to demonstrate the behavior in accuracy
and efficiency of LANN-DSVD. With this aim, it will be compared to a Deep
Neural Network (DNN), a main Big Data paradigm nowadays, trained in both
distributed and batch setups using the implementation provided by Tanaka et al.
[6]. To apply DNN to a distributed environment a ring algorithm was followed:
node 1 computes the first DNN over X1, afterwards, this DNN1 is forwarded to
node 2 to continue training over X2 and so on, until node K computes the final
DNNK.

Table 1 contains the data sets used in the experiments, treated as binary
classification problems, that were selected to check different situations: small
and large data sets with more samples than variables and viceversa.

To simulate a distributed environment the first three data sets were splitted
into 5 non-overlapped blocks while the last two data sets were splitted into
10. The adequate DNN topologies and hyperparameters were experimentally
obtained using grid search for the first three data sets whereas for MiniBoone
and Susy data sets the employed architecture was the one in the research by
Baldi et al. [7]. Table 1 shows the topologies that obtained the best results.

All experiments were carried out in the MatLab environment using a 64-bit
CPU Quad Core (clock speed of 3.60GHz).

In order to obtain reliable results the Area Under the Curve (AUC) was
calculated using 10-fold cross-validation. Table 2 shows the mean Area Under
the Curve (AUC) and the standard deviation obtained. As can be noticed, only
one result column is included for LANN-DSVD as it obtains exactly the same
values as its batch version. This fact contrasts with what happens with DNN
that does not guarantee the same results. Finally, we can observe that, despite of
its simplicity, in all cases the ANN trained by LANN-DSVD achieved invariably
competitive results when compare to a DNN.

A second comparison was made in terms of computational time. It is notice-
able that for the Susy data set, the most significant case due its size, the learning
process of the DNN needed 41,456 seconds in the case of the distributed setup
and 195,301 seconds in the batch scenario whilst LANN-DSVD only needed,
respectively, 22.2 and 21.4 seconds.
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Data set Samples Variables DNN topology
Lung [8] 181 12,533 [12533,10,2]
Smk [9] 187 19,993 [19993,10,2]
Ovarian [8] 253 15,154 [15154,10,2]
MiniBooNE [10] 130,064 50 [50,300,300,300,300,2]
Susy [10, 7] 5,000,000 18 [18,300,300,300,300,2]

Table 1: Data sets and DNN topology used for the experimental study.

Data set AUC LANN-DSVD AUC DNN-Inc AUC DNN-Batch
Lung 1.000± 0.000 0.983± 0.053 0.983± 0.053
Smk 0.795± 0.075 0.640± 0.117 0.719± 0.064
Ovarian 1.000± 0.000 0.984± 0.029 0.997± 0.010
MiniBooNE 0.955± 0.002 0.842± 0.025 0.836± 0.014
Susy 0.836± 0.000 0.756± 0.002 0.798± 0.001

Table 2: Mean test AUC ± standard deviation for LANN-DSVD and DNN in
a incremental and batch scenario.

4 Conclusions

Distributed learning is one active and promising line of research in order to
deal with large and/or distributed data. In this paper, LANN-DSVD, a new
distributed machine learning algorithm based on one-layer ANNs has been pre-
sented. This algorithm exhibits many interesting characteristics:

• It is fast and accurate.

• It is able to learn from distributed data while maintaining its privacy.

• Learning the distributed data sets can be done in parallel, in contrast with
DNNs or other incremental learning algorithms that need to follow a ring
scheme.

• Inside every location, if the amount of data is big, learning can be further
distributed. Therefore, it is an interesting algorithm even if we only have
one location but multi-core processors.

• It is parameter free, a highly desirable characteristic for large-scale learning
environments, where tuning a model can be a very time consuming task.

• It allows incremental learning, which together with its parameter free char-
acteristics, makes the algorithm very suitable to online learning from data
streams.

These results encourage further research in the algorithm. As a near future
work, the influence of several other Big Data Vs (Variety, Variability, Verac-
ity. . . ) will be studied.
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