
Spatial Pooling as Feature Selection Method for
Object Recognition

Murat Kirtay, Lorenzo Vannucci, Ugo Albanese,
Alessandro Ambrosano, Egidio Falotico and Cecilia Laschi ∗

The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera (PI), Italy.

Abstract. This paper reports our work on object recognition by using
the spatial pooler of Hierarchical Temporal Memory (HTM) as a method
for feature selection. To perform the recognition task, we employed this
pooling method to select features from COIL-100 dataset. We bench-
marked the results with state-of-the-art feature extraction methods while
using different amounts of training data (from 5% to 45%). The results
indicate that the performed method is effective for object recognition with
a low amount of training data in which state-of-the-art feature extraction
methods show limitations.

1 Introduction

Object recognition is a crucial task in many robotic applications. A key compo-
nent of an object recognition system is a feature extractor, capable of detecting
useful pieces of information that can improve the actual recognition. In par-
ticular, object recognition is employed in industrial environments, where com-
putational efficiency and storage benefits must be taken into consideration, to
perform visually guided manipulation. In such cases, it could be that the image
has a very low resolution or a uniform background where there are no sharp local
changes in the contrast. This can impair some state-of-the-art feature extrac-
tion methods that rely on these image properties, such as scale-invariant feature
transform (SIFT), and speeded up robust features (SURF) [1]. In this study,
we employed a feature selection method that can work without such assump-
tions, employing the spatial pooler phase of Hierarchical Temporal Memory,
a Neo-cortically inspired machine learning algorithm [2]. This method is em-
ployed in a full object recognition pipeline that includes a multi-class support
vector machine (M-SVM) [3] to perform the actual recognition starting from
the features extracted. The whole process is tested on the Columbia University
Image Library (COIL-100), a collection of images taken in a controlled indoor
environment with an artificially created uniform background. The employed
method is benchmarked against other feature extraction methods capable of
dealing with such limitations, such as: using raw pixels, 3D color histograms
and Histogram Oriented Gradients (HOG) [1]. The obtained results show that,
with this method, the recognition accuracy is improved even with a smaller
amount of training data, therefore proving the usefulness of the approach.

∗This project has received funding from the European Union Horizon 2020 Research and
Innovation Programme under Grant Agreement No. 720270 (HBP SGA1).

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

91

2 Methods

The recognition pipeline consists of three distinct processing parts: preprocess-
ing, feature selection and recognition. We note that the main purpose is to
benchmark the recognition performance of feature extraction methods by using
a lesser amount of training data.

2.1 Preprocessing

In this part, the images are transformed and downscaled into preprocessed vec-
tors to be inputs of either feature extraction phase or directly to M-SVM. These
steps are unique for each feature extraction method. For instance, when em-
ploying raw pixels or 3D color histograms, only normalization of the image was
performed. Whereas, HOG requires normalization of grayscaled images and the
computation of horizontal and vertical gradients of the images in a predefined
size of pixel length. Finally, for the spatial pooler (cortical activations), the
images were grayscaled and thresholded to be binarized. As the last step, the
generated input vectors were randomly grouped into training, validation and
test sets. The size of training and validation sets were chosen to be the same
(from 5% to 45%), while the remaining data were used as the test set.

2.2 Feature Selection: Spatial Pooler Method

Fig. 1: Feature selection flow from bina-
rized inputs to the cortical activations.

To derive features as cortical activa-
tions from a given visual pattern, we
follow the formalization provided in
the study [4] by using the neurosci-
entific concepts in [2] and implemen-
tation in [5]. Constructing a spatial
pooler region requires predefining a
number of parameters which are n as
the total number of patterns (7200),
p as the vectorized length of a pat-
tern (1024), m as a total number
of cortical columns (1024) and q as
number of proximal dendrite synapses
(100). To perform spatial pooling op-
erations, U ∈ {0, 1}n×p represents the
binarized input matrix, c ∈ N1×m de-
fines the indices of constructed corti-
cal columns and Φ ∈ Rm×q is used for a set of randomly initialized synaptic
permanence values for each columns. The connections between cortical columns
and an input pattern elements were formed by using set of proximal synapses,
Λ ∈ {0, . . . , p − 1}m×q. In Figure 1, the cortical columns were shown as cylin-
ders, a row-vector of the U shown as a binary input vector, some of the proximal
synapses for Λ0 and Λ8 are illustrated as solid and dashed lines. Additionally, the

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

92

operations of spatial pooler require defining several functions as follows. In that,
I(ω) is an indicator function which yields 1 if ω is true, otherwise 0. kmax(S,
k) returns kth largest element of S and max(v) returns maximum value of the
given vector (v). A clipping function denoted as clip(M, lb, ub), defined to re-
turn a bounded matrix with [lb, ub] where values smaller than lb assigned as lb,
and values larger than ub assigned as ub. Finally, � and ⊕ indicate element-wise
multiplication and sum, respectively.

The spatial pooler computations are performed into three distinct phases:
overlap, column inhibition and learning. The purpose of overlap is to derive
the total number of active proximal synapses (shown as α ∈ R1×m) for each
column to decide whether a column should be active. To derive α, we obtained
the number of synaptic permanence values which are above the threshold, as
ps = 0.5. X ∈ {0, 1}m×q represents set of inputs for the columns. Y is a matrix
that contains bitmasked values for synaptic permanence values which computed
as (Y ≡ I(Φi ≥ ps) ∀i). α̂ ∈ N1×m holds sum of the active connected proximal
synapses as α̂i = XiYi. In Figure 1, an active synapse shown a solid line with
circular end point while dashed line with diamond endpoint indicated inactive
one. To encourage less frequently active columns to compete for activation,
boosting values (as b ∈ R1×m) are assigned to the associated columns (i.e, bi is
boosting value for the column ci). As a final step of this phase, the elements of
α vector was derived by α̂ibi where α̂i ≥ pd where pd = 10 refers to the proximal
dendrite activation, otherwise it is assigned to be 0. Column inhibition phase
aims to compute the set of active columns, blue colored cylinders in Figure 1,
while achieving desired column activity which is shown as pc and set to be
20% of all columns. The neighborhood mask matrix (H ∈ {0, 1}m×m) indicates
that Hi are the neighborhood columns for ci. In particular, if Hi,j is 1 the cj
column assumed to be a neighbor of ci. To determine which columns should
be active after inhibition, the lower-bounded kth largest overlap (γ ∈ N1×m)
was computed by γ ≡ max(kmax(Hi � α, pc), 1) ∀i. Lastly, ĉ ∈ {0, 1}1×m is
an indicator vector constructed for the active columns by ĉ ≡ I(αi ≥ γi) ∀i.
Learning phase consists of three subphases: synaptic permanence adaptation,
boosting operations and updating inhibition radius. To begin with the first
subphase, the permanence matrix (Φ) is adjusted by Φ ≡ clip(Φ ⊕ δΦ, 0, 1)
where δΦ is calculated by δΦ ≡ ĉᵀ�(φ+X−(φ−¬X)). Performing this subphase
provides the adapted values for the synapses (Φi) that exist on a column (ci).
We employed values of φ+ = 0.001, φ− = −0.001 for this subphase. In the next
subphase, the columnar and synaptic level boosting operations carried out to
determine how frequently a column become active and boost the less frequently
active columns to compete. In that, η(a) ∈ R1×m refers to set of active duty
cycle for all columns where η(min) ∈ R1×m as the minimum active duty cycles
for all columns derived by η(min) ≡ kamax(Hi � η(a)) ∀i where ka = 0.001

is minimum activity level scaling factor. Based on the comparison of η
(a)
i and

η
(min)
i the boosting value of columns is determined by b ≡ β(η

(a)
i , η

(min)
i) ∀i.

This boosting function returns 1 if the η
(a)
i >η

(min)
i , returns β0 = 10 as maximum

amount of boosting if η
(min)
i = 0, otherwise it returns η

(a)
i (1− β0)/η

(min)
i + β0.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

93

Boosting for permanence values was applied on a vector η(o) ∈ R1×m where η
(o)
i

is the overlap duty cycle for each ci ∈ c. The permanence values boosted by

Φ ≡ clip(Φ⊕ kbpsI(η
(o)
i < η

(min)
i), 0, 1) where kb = 0.1 refers to the permanence

boosting scaling factor. In the last subphase, the inhibition radius should be
updated to adjust the average receptive size (input space) between columns
and their corresponding connected synapses, yet we prefer to use fixed desired
column activation level (pc) to represent a feature vector with a constant number
of active bits. To generate a feature vector, the aforementioned spatial pooler
operations will be performed for each input that exists in U.

2.3 Recognition: Multi-Class Support Vector Machine

A multi-class support vector machine was trained to optimize the Hinge loss
via gradient descent [3]. The generated feature vector annotated with xi and
a bias node and bias vector were concatenated to xi and the weight matrix
(W), respectively. Then, the score function for an object j (f(xi,W)j) was
computed by taking the j-th column of the result of the multiplication be-
tween xi and W . The loss value for i-th feature vector is defined as Li =∑M

j 6=yi
(max(0, f(xi,W)j − f(xi,W)yi

+ ∆)) + λ||W ||2, and was computed by
adding 1 as a soft margin (∆) parameter to the object score of the actual object
yi (f(xi,W)yi

), and by summing the losses over all the object represented in the
dataset (M), except the actual one. To avoid overfitting, we added a L2 regu-
larization factor with a hyperparameter λ. The calculated loss for each input is
averaged over the dataset to get the full loss, Lfull = 1

N

∑N
i=1 Li. To find values

for the hyperparameters such as learning rate for the gradient descent and λ,
cross-validation employed for model selection, with an early stopping criterion.
In particular, we stopped the training if the accuracy rate of the validation set
remained below a threshold of 0.01 for 20 iterations. Then, the best model (with
hyperparameters) was used to recognize the objects in the test set images. To
further analyze the recognition performances of each feature extraction meth-
ods, the recognition procedures were performed with different training set sizes
and different recognition metrics, such as average accuracy and F1 scores, were
computed.

3 Dataset description and reproducibility of the study

The object recognition task was carried out on the Columbia University Image
Library (COIL-100) [6]. The dataset consists of 100 objects with 72 color images
(7200 in total) for each object that captured by rotating 5 degrees on a motorized
turntable. Note that, several preprocessing operations were performed on the
images such as cropping images from the background and resizing them to 128×
128. The images downsized to 32× 32 for our recognition pipeline. The related
source code for this study can be found on the repository named ESANN2018 1.

1www.github.com/muratkirtay/ESANN2018

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

94

4 Results

Fig. 2: Accuracy rates for different
training set sizes.

This section provides the results for
the object recognition performed by
the proposed pipeline with the four
different feature vectors. The results
were benchmarked by increasing the
training set size by 5% (from 5 to
45%) and using a validation set hav-
ing the same size of the training set.
Then, we used the remaining data for
the test sets to obtain recognition per-
formance metrics including accuracy,
precision, recall, and F1 scores. The
accuracies on the test sets at different
training percentages are illustrated in
Figure 2, where cortical activations,
raw pixels, histogram oriented gradi-
ents and 3D color histograms can be
compared. By comparing the increment trends in these curves, we observe that
the use of cortical activations as input yielded better accuracy rates than using
other feature vectors while employing less amount of training data. For instance,
recognition accuracy by using a training percentage of 5% obtained an 82.0454%
accuracy for cortical activations, 63.3939% for raw pixels, 56.5909% for HOGs
and 60.3787% for 3D histograms. To further analyze the results we constructed

(a) CA, F1:0.9060 (b) Pixel, F1:0.7613 (c) HOGs, F1:0.6903 (d) 3D Hists, F1:0.774

Fig. 3: Confusion Matrices and Average F1 Scores for Cortical Activations (CA),
Raw Pixels (Pixels), Histogram Oriented Gradients (HOGs) and 3D Color his-
tograms (3D Hists).

confusion matrices as heat maps for each feature vector at 10% training size.
These matrices are depicted in Figure 3 and the actual object IDs and the rec-
ognized object IDs are presented, respectively, as the rows and the columns of
the matrices. These figures can be interpreted in this manner: the densely popu-
lated main diagonal indicates the success in recognition while denotes a sparsely
populated matrix lower performances. In these visualizations, it can be observed
that the elements in the matrices for Figure 3(b), 3(c), 3(b) are more sparse.
Conversely, in the case of cortical activations in Figure 3(a), the elements tend

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

95

to be more concentrated on the main diagonal. In order to numerically explain
this observation, we report the average F1 scores, computed as the harmonic
mean of precision and recall. Consistent with the confusion matrices, the F1

scores obtained for the recognition algorithms follow the same trend, (CAF1
>

3DHistF1
> PixelF1

> HOGF1
) that we previously observed in the accuracy

values (CAaccuracy > 3DHistaccuracy > Pixelaccuracy > HOGaccuracy).

5 Conclusions

The use of spatially pooled features (cortical activations) gives rise to a signif-
icant improvement in recognition accuracy rates while employing less amount
of training data, compared to the other feature extraction algorithms consid-
ered. Moreover, the performed feature selection is capable of working with the
dataset composed of images with low resolution and few changes in the con-
trast. Thus, our ongoing studies aim to utilize this method on the dataset that
constructed by employing the iCub humanoid robot for recognition and grasp-
ing tasks where environmental changes are controlled, and the state-of-the-art
methods show limitations or poor performance [7]. The generality of the compu-
tational and representation aspects of the Neo-cortically inspired spatial pooling
could be further exploited to develop a hierarchical framework, in a realistic
simulation platform [8], which allows for multimodal (e.g., vision and tactile)
sensory representations of the objects for recognition.

References

[1] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer-Verlag New
York, Inc., New York, NY, USA, 1st edition, 2010.

[2] Jeff Hawkins and Subutai Ahmad. Why neurons have thousands of synapses, a theory of
sequence memory in neocortex. Frontiers in Neural Circuits, 10:23, 2016.

[3] J Weston and C Watkins. Support Vector Machines for Multi-Class Pattern Recognition.
Proceedings of the 7th European Symposium on Artificial Neural Networks (ESANN-99),
(April):219–224, 1999.

[4] James Mnatzaganian, Ernest Fokoue, and Dhireesha Kudithipudi. A mathematical for-
malization of hierarchical temporal memory’s spatial pooler. Frontiers in Robotics and AI,
3:81, 2017.

[5] Murat Kirtay, Egidio Falotico, Alessandro Ambrosano, Ugo Albanese, Lorenzo Vannucci,
and Cecilia Laschi. Visual Target Sequence Prediction via Hierarchical Temporal Memory
Implemented on the iCub Robot, pages 119–130. Springer International Publishing, Cham,
2016.

[6] Sameer A. Nene, Shree K. Nayar, and Hiroshi Murase. Object image library (coil-100).
Technical report, 1996.

[7] M. Kirtay, U. Albanese, L. Vannucci, E. Falotico, and C. Laschi. A graspable object dataset
constructed with the icub humanoid robot’s camera. Technical report, 2017.

[8] Egidio Falotico and et al. Connecting artificial brains to robots in a comprehensive simu-
lation framework: The neurorobotics platform. Frontiers in Neurorobotics, 11:2, 2017.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

96

