Set point thresholds from topological data analysis and an outlier detector

Alessio Carrega
aizoOn - Technology Consulting
Torre San Vincenzo, Via San Vincenzo 2 16-th floor, 16121 Genova, Italy

Abstract

We provide an algorithm for unsupervised or semi-supervised learning to determine, once the input settings are given, a very easily described zone of optimal execution settings for a production. A region is very easily described if anyone can determine whether a point is inside it and select a point on it with a certain range of choice. This can be applied both in production optimization and in predictive maintenance. Part of the method is based on a topological data analysis tool: Mapper. We also provide a method to detect outliers on new data.

1 Introduction

Many unsupervised, or semi-supervised, learning algorithms divide the data set in sub-sets, then each new point of the space of data is associated with the sub-set that realizes the minimum distance from the point. This provides a decomposition of the space of data in regions. A first request can be to easily understand whether a point is inside one such region or not. Computing all distances from data set points can be computationally expensive. A further request is to easily select a point on one such region with a certain range of choice. To the best of the author knowledge, no algorithms in literature answer this request. Moreover it can required to consider only instances with some fixed coordinates.

This can be very useful in production optimization and predictive maintenance. In production optimization we are interested in getting products with an high quality. A target in predictive maintenance is to set machines so to have a lifetime bigger than a certain value. In these fields it is extremely useful to have one such very simple description of a region of execution settings (e.g. humidity, temperature) in order to get products as desired once the input settings (e.g. raw materials) are given.

The ideal description is a list of threshold for continuous features, and a list of values for non continuous features. In this paper we present an algorithm following the above line. As most learning algorithms, we require that data features are all numeric. In this case one such easy region is a multidimensional rectangle (parallel to the axis), namely a real interval for each execution setting. The number of input settings may be null.

Part of the algorithm is based on a TDA (Topological Data Analysis) tool, in particular it is based on the 1-dimensional Mapper [1]. See [2] as a general refer-
ence for TDA. These methods are still little used but are very useful especially for unsupervised, or semi-supervised, learning.

As further motivation of this work, we can notice that most of machine learning algorithms applied in the mentioned fields are based on supervised learning, while we work in unsupervised, or semi-supervised, environment. For a survey on machine learning applications in production optimization and predictive maintenance we can refer on $[3,4]$.

Let $\Sigma \subset \mathbb{R}^{d}$ be the $(d-k)$-plane given fixing the $k \geq 0$ input settings. The general steps of the algorithm are: (1) Select an optimal sub-set B_{0} of the data set (Section 3). (2) Get a convex polyhedron P (Definition 2.1) represented by B_{0} (Section 4). (3) Apply on B_{0} an outlier detector considering outliers points outside P_{u} or inside P_{l} with P_{u} and P_{l} convex polyhedra (Section 2). (4) Get a multidimensional square inside the convex polyhedron $\Sigma \cap P \cap P_{u}$ as big as possible and representing data (Subsection 5.1, Fig. 1-(left)). (5) Get a multidimensional rectangle $R_{u} \subset \Sigma \cap P \cap P_{u}$ enlarging as much as possible the square (Subsection 5.2, Fig. 1-(center)). (6) Repeat steps (4) and (5) replacing $P \cap P_{u}$ with P_{l} and getting a rectangle $R_{l} \subset \Sigma \cap P_{L}$. (7) Decompose $R_{u} \backslash R_{l}$ in smaller rectangles (Section 6).

A first approach for an algorithm to get a multidimensional rectangle enlarging a multidimensional square as much as possible would get an exponential complexity on the dimension. We provide a smarter algorithm with a linear complexity.

2 Outlier detector

In this section we describe a method to detect outliers on new data. No knowledge of TDA is needed. However the method would be much more precise if applied on every sub-set of the data set obtained after a clustering or a division in bins as in Mapper. Unfortunately there is not enough space to compare this method with better known ones and to provide helpful figures. The main reason why we adopt this method is that it returns convex polyhedra and this applies well to our purpose.
Definition 2.1. A convex polyhedron $P \subset \mathbb{R}^{d}$ the intersection of a finite number of half-spaces, namely it is a set of the form $\left\{x \in \mathbb{R}^{d} \mid\left\langle w^{(1)}, x\right\rangle \leq w_{0}^{(1)}, \ldots\right.$, $\left.\left\langle w^{(h)}, x\right\rangle \leq w_{0}^{(h)}\right\}$ for some $h \geq 1, w^{(1)}, \ldots, w^{(h)} \in \mathbb{R}^{d}, w^{(i)} \neq 0$, and $w_{0}^{(1)}, \ldots$, $w_{0}^{(h)} \in \mathbb{R}$, where $\langle v, w\rangle$ is the standard inner product in \mathbb{R}^{d} of v and w. The hyperplanes $\left\{x \in \mathbb{R}^{d} \mid\left\langle w^{(i)}, x\right\rangle=w_{0}^{(i)}\right\}$ that intersect P are called facets of P. The interior of a convex polyhedron is the sub-set obtained substituting all the weak inequalities with strong inequalities. We consider also the empty set \varnothing a convex polyhedron.

We start from a data set $\left\{x^{(1)}, \ldots, x^{(s)}\right\} \subset \mathbb{R}^{d}$ whose elements are considered not to be outlier. Two convex polyhedra, P_{u} and P_{l}, are constructed, we call them respectively upper polyhedron and lower polyhedron. The basic idea is to consider as outliers the points too far away from a central point (construction
of the upper polyhedron) and refine the result considering a hole around the central point (construction of the lower polyhedron). The upper polyhedron P_{u} contains the data set while no points of the data set are in P_{l}. The instances outside P_{u} and inside P_{l} are considered outliers.

Let \bar{m} be the mean of the data set: $\bar{m}:=\left(\sum_{i} x^{(i)}\right) / s$. Let $\varepsilon>0$ be a fixed number, the more ε is close to 0 , the more points are considered outliers.

For $x, y \in \mathbb{R}^{d}, d(x, y)=\sqrt{\langle x-y, x-y\rangle}$ is the distance between x and y. For $\lambda \geq-d\left(x^{(i)}, \bar{m}\right)$ the half-space $H_{\lambda}\left(x^{(i)}\right) \subset \mathbb{R}^{d}$ is the one containing \bar{m}, with boundary hyperplane orthogonal to the line passing through \bar{m} and $x^{(i)}$, and whose distance from \bar{m} is $d\left(x^{(i)}, \bar{m}\right)+\lambda$.

Choose a positive integer k_{u} as a parameter to smooth the rectangle. The higher is k_{u} the sharper is the region to avoid outliers and the higher is the computational cost. The region P_{u} is the convex polyhedron obtained by the following algorithm: start with $P_{u}=\mathbb{R}^{d}$; remove \bar{m} from the data set; apply a cycle with at most k_{u} steps; in each step select the point $x^{(i)}$ with the maximum distance from \bar{m}, if all the starting data set is contained in $P=P_{u} \cap H_{\varepsilon}\left(x^{(i)}\right)$, substitute P_{u} with P, in both cases remove the point $x^{(i)}$ from the list.

If there are points $x^{(i)}$ in the data set whose distance $d\left(x^{(i)}, \bar{m}\right)$ from \bar{m} is lower equal than ε the convex polyhedron P_{l} is empty. Otherwise P_{l} is the intersection of all the half-spaces $H_{-\varepsilon}\left(x^{(i)}\right)$.

3 Optimal sub-sets of the data set

Here we apply a method to divide the data set in sub-sets and make some assumptions that will be discussed in Section 4.

Mapper [1] is a TDA method which divides the data set in sub-sets called bins. These sub-sets can intersect themselves. Every such sub-set is a vertex of a graph and the intersections correspond to the connections between vertices.

Let $\left\{x^{(1)}, \ldots, x^{(n)}\right\} \subset \mathbb{R}^{d}$ be the data set. Apply 1-dimensional Mapper on the data set using the filter function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Assumption 3.1. The filter function f is linear: $f(x)=\left\langle w^{f}, x\right\rangle$ for some $w^{f} \in \mathbb{R}^{d}$.

By "optimal" points we mean points that are preferable than others, for instance they could be execution settings of a production giving good products. Let B_{0} be a set whose elements are considered optimal and is the union $B_{0}=$ $\cup_{j} B_{0, j}$ of connected bins $B_{0, j}$ related to consecutive intervals of the used covering of \mathbb{R}. Let $(a, b) \subset \mathbb{R}$ be the open interval corresponding to B_{0} in the covering of \mathbb{R}, and let $B_{1}, \ldots, B_{m}, m \geq 0$, be the bins such that for all $1 \leq i \leq m, f\left(B_{i}\right) \subset(a, b)$ and $B_{0} \cap B_{i}=\varnothing$. Therefore all the elements $x^{(i)} \in B_{0} \cup B_{1} \cup \ldots \cup B_{m}$ satisfy $a<\left\langle w^{f}, x^{(i)}\right\rangle<b$.

Assumption 3.2. For every $i>0$ the set B_{0} is almost linearly separated from B_{i}, namely for each $i>0$ there is a vector $w^{(i)} \in \mathbb{R}^{d}$ and a scalar $w_{0}^{(i)} \in \mathbb{R}$ such that $\left\langle w^{(i)}, x^{(j)}\right\rangle<w_{0}^{(i)}$ and $\left\langle w^{(i)}, x^{(h)}\right\rangle>w_{0}^{(i)}$ almost for every $x^{(j)} \in B_{0}$
and $x^{(h)} \in B_{i}$. This can be studied applying a linear SVM (Support Vector Machine)

4 First optimal region

In this section we describe the first optimal region of points in the space of data and discuss the assumptions.

For Section 3, all the points in the following convex polyhedron P that are not outliers can be considered optimal: $P:=\left\{x \in \mathbb{R}^{d} \mid\left\langle-w^{f}, x\right\rangle \leq-a,\left\langle w^{f}, x\right\rangle \leq\right.$ $\left.b,\left\langle w^{(1)}, x\right\rangle \leq w_{0}^{(1)}, \ldots,\left\langle w^{(m)}, x\right\rangle \leq w_{0}^{(m)}\right\}$.

Our assumptions are made to get the set P and to ensure that it is a convex polyhedron and that $\left\{x^{(1)}, \ldots, x^{(n)}\right\} \cap P$ consists almost entirely of optimal points. In some situations this could be reached also by the application of a standard clustering algorithm. Mapper is preferable to standard clustering methods for several reasons: connection between bins, visualization, detection of zones, \ldots. (see for instance $[1,5]$). One of the most performing choice of filter function for Mapper is a principal component, this choice would make Assumption 3.1 satisfied. Scrolling through this list of filters, and applying Mapper in smaller data sets, we get both assumptions satisfied.

Apply on B_{0} the method to detect outliers on new data described in Section 2 producing the convex polyhedra P_{u} and P_{l}. We denote with $\Sigma:=\{x \in$ $\mathbb{R}^{d} \mid x_{d-k+i}=c_{i}$ for $\left.i \in\{1, \ldots, k\}\right\}$ the $(d-k)$-plane defined by fixing the $k \geq 0$ input settings. Therefore we are interested in $\Sigma \cap P \cap P_{u} \cap\left(\mathbb{R}^{d} \backslash P_{l}\right)$. This set is composed just of optimal points, has no outliers, its points respect the input settings, and it is described just by a number of linear inequalities, hence it is easy to determine wheter a point is inside it, but it is still not easy to select a point inside it.

5 List of intervals of execution settings

This section explains how to get the multidimensional rectangles $R_{u} \subset \Sigma \cap P \cap P_{u}$.

5.1 The square

Here we aim to find a non empty $(d-k)$-dimensional square $C_{u} \subset \Sigma$ parallel to the axis such that all its elements are optimal and not outlier (see Fig. 1-(left)).

Definition 5.1. Let $L=\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{d}, b_{d}\right)\right)$ be an ordered list of pairs such that for each $j, a_{j}, b_{j} \in \mathbb{R} \cup\{-\infty, \infty\}$ and either $-\infty \leq a_{j}<b_{j} \leq \infty$ or $a_{j}=b_{j} \in \mathbb{R}$. We call rectangle of L the set

$$
R=\left\{x \in \mathbb{R}^{d} \mid \text { for each } j, a_{j} \leq x_{j} \leq b_{j}\right\}
$$

An ordered family $\left(v_{1}, \ldots, v_{d}\right) \in(\mathbb{R} \cup\{-\infty, \infty\})^{d}$ such that for every $j, v_{j} \in$ $\left\{a_{j}, b_{j}\right\}$ is called vertex of R. The dimension of R is the number of components j such that $a_{j}<b_{j}$. A square is a rectangle such that $b_{j}-a_{j}=b_{h}-a_{h}$ for every
j and h such that $a_{j}<b_{j}$ and $a_{h}<b_{h}$. The quantity $b_{j}-a_{j}>0$ is the side length of the square, while the point $m \in \mathbb{R}^{d}, m_{j}=\left(b_{j}+a_{j}\right) / 2$, is its center.

The center m_{u} of the square C_{u} is a point in the interior of $\Sigma \cap P \cap P_{u}$ that represents well the elements of B_{0} close to Σ. If it is not possible to get one such point, the algorithm stops, and a rectangle is not produced.

Take the maximum radius $r>0$ for what $B\left(m_{u}, r\right) \cap \Sigma$ is contained in $P \cap P_{u}$, where $B\left(m_{u}, r\right)$ is the set of points with distance from m_{u} at most r. This can be easily obtained applying a minimum on the distances $d\left(m_{u}, F_{i} \cap \Sigma\right)$ between m_{u} and the hyperplanes F_{i} 's given by the inequalities that define $P \cap P_{u}$. If $F_{i} \cap \Sigma \neq \varnothing$ the distance $d\left(m_{u}, F_{i} \cap \Sigma\right)$ can be easily computed as point/hyperplane distance in \mathbb{R}^{d-k} after the application on m_{u} and on $F_{i} \cap \Sigma$ of the map $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d-k}$ $\left(x_{1}, \ldots, x_{d}\right) \mapsto\left(x_{1}, \ldots, x_{d-k}\right)$.

Define the square C_{u} as the one centered in m_{u} and with side length $\frac{2 r_{u}}{\sqrt{d-k}}$. This is the biggest square C centered in m_{u} such that $C \subset \Sigma \cap P \cap P_{u}$.

5.2 Enlarging the square

In this subsection we enlarge the square C_{u} as much as possible getting the ($d-k$)-dimensional rectangle $R_{u} \subset \Sigma \cap P \cap P_{u}$ (see Fig. 1-(center)). A first approach would get the result by a simple algorithm based on enlargements vertex by vertex, hence getting an algorithm with exponential complexity on the dimension $d-k$. We provide a smarter algorithm producing the same result and having linear complexity on the dimension $d-k$.

The idea is as follows: Suppose $k=0\left(\Sigma=\mathbb{R}^{d}\right)$. Start taking the square C_{u} as the rectangle R_{u}. Select a direction $\pm e^{(j)}$ parallel to the axis $\left(e^{(j)}\right.$ is the j-th element of the standard basis of \mathbb{R}^{d}). Select a central point $\bar{m} \in F$ on the facet F of R_{u} corresponding to this direction $\pm e^{(j)}$. Let F^{\prime} be the hyperplane containing F. Push the facet F and the hyperplane F^{\prime} along the direction $\pm e^{(j)}$ until the distance between \bar{m} and $F^{\prime} \cap \partial\left(P \cap P_{u}\right)$ is equal to the distance $d(\bar{m}, v)$, where v is any vertex of $R_{u} \cap F^{\prime}$. The central point \bar{m} is constructed by cases according to the limitations of coordinates of the rectangle studying where the facet touches the boundary of the polyhedron for the first time. The distance between the central point \bar{m} and a vertex $v \in F^{\prime}$ of the rectangle does not depend on the choice of one such vertex and is easy to compute.

If $k>0$, intersect Σ with $P \cap P_{u}$, and with the hyperplanes F_{i} 's, apply the projection $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d-k}, x \mapsto\left(x_{1}, \ldots, x_{d-k}\right)$, then apply the method above.

6 Sharper list of intervals

Suppose that the lower polyhedron P_{l}, is not empty. Consider the point m_{u} and its reflections along facets of P_{l}. If one of these points is in the interior of P_{l} we take it as central point m_{l} for P_{l}, then we repeat the procedure of Section 5 taking P_{l} instead of $P \cap P_{u}$ and m_{l} instead of m_{u}. Hence we get a rectangle $R_{l} \subset \Sigma \cap P_{l}$. Otherwise R_{l} is empty. The set $R_{u} \backslash R_{l}$ can be described as union of rectangles.

Remark 6.1. If we change the order of the variables $x_{j}, 1 \leq j \leq d-k$, by a permutation σ, we get the same square C_{u} but a different rectangle $R_{u, \sigma}$ (see Fig. 1-(right)). The algorithm to get a rectangle gives larger intervals to the first coordinates. We can take advantage of this observation to get bigger intervals for selected features or to get rectangles with bigger volumes.

7 Conclusions

We provided an algorithm for unsupervised, or semi-supervised, learning getting a very simple description of a region in the space of data consisting of optimal points that are not outliers and have some fixed coordinates. This can be very useful in production optimization and predictive maintenance.

This work has three main original contributes and combines them together: 1. A discussion of all the assumptions and a method to satisfy them based on TDA (Section 4, steps (1) and (2)). 2. An outlier detector for new data (TDA is not needed but is useful) (Section 2, step (3)). 3. An efficient algorithm to get a multidimensional rectangle enlarging a multidimensional square as much as possible (TDA is not needed) (Subsection 5.2, step (5)).

Fig. 1: $\mathbb{R}^{d}=\Sigma=\mathbb{R}^{2}$, (left) The biggest square inside $P \cap P_{u}$ centered in a representative point of the sub-set of the data set. (center) The rectangle inside $P \cap P_{u}$ obtained enlarging the square. (right) The rectangle obtained after the non trivial permutation.

References

[1] G. Singh, F. Mémoli, and G. Carlsson. Topological methods for the analysis of high dimensional data sets and 3d object recognition. In $S P B G$, pages 91-100, 2007.
[2] G. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2):255-308, 2009.
[3] R. Dekker and P. A. Scarf. On the impact of optimisation models in maintenance decision making: the state of the art. Reliability Engineering 83 System Safety, 60(2):111-119, 1998.
[4] R. Ahmad and S. Kamaruddin. An overview of time-based and condition-based maintenance in industrial application. Computers \mathcal{G} Industrial Engineering, 63(1):135-149, 2012.
[5] M. Nicolau, A. J. Levine, and G. Carlsson. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proceedings of the National Academy of Sciences, 108(17):7265-7270, 2011.

