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Abstract. We provide an algorithm for unsupervised or semi-supervised
learning to determine, once the input settings are given, a very easily
described zone of optimal execution settings for a production. A region is
very easily described if anyone can determine whether a point is inside it
and select a point on it with a certain range of choice. This can be applied
both in production optimization and in predictive maintenance. Part of
the method is based on a topological data analysis tool: Mapper. We also
provide a method to detect outliers on new data.

1 Introduction

Many unsupervised, or semi-supervised, learning algorithms divide the data set
in sub-sets, then each new point of the space of data is associated with the
sub-set that realizes the minimum distance from the point. This provides a
decomposition of the space of data in regions. A first request can be to easily
understand whether a point is inside one such region or not. Computing all
distances from data set points can be computationally expensive. A further
request is to easily select a point on one such region with a certain range of
choice. To the best of the author knowledge, no algorithms in literature answer
this request. Moreover it can required to consider only instances with some fixed
coordinates.

This can be very useful in production optimization and predictive mainte-
nance. In production optimization we are interested in getting products with an
high quality. A target in predictive maintenance is to set machines so to have a
lifetime bigger than a certain value. In these fields it is extremely useful to have
one such very simple description of a region of execution settings (e.g. humidity,
temperature) in order to get products as desired once the input settings (e.g.
raw materials) are given.

The ideal description is a list of threshold for continuous features, and a list
of values for non continuous features. In this paper we present an algorithm
following the above line. As most learning algorithms, we require that data
features are all numeric. In this case one such easy region is a multidimensional
rectangle (parallel to the axis), namely a real interval for each execution setting.
The number of input settings may be null.

Part of the algorithm is based on a TDA (Topological Data Analysis) tool, in
particular it is based on the 1-dimensional Mapper [1]. See [2] as a general refer-
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ence for TDA. These methods are still little used but are very useful especially
for unsupervised, or semi-supervised, learning.

As further motivation of this work, we can notice that most of machine learn-
ing algorithms applied in the mentioned fields are based on supervised learning,
while we work in unsupervised, or semi-supervised, environment. For a sur-
vey on machine learning applications in production optimization and predictive
maintenance we can refer on [3, 4].

Let Σ ⊂ Rd be the (d − k)-plane given fixing the k ≥ 0 input settings.
The general steps of the algorithm are: (1) Select an optimal sub-set B0 of the
data set (Section 3). (2) Get a convex polyhedron P (Definition 2.1) represented
by B0 (Section 4). (3) Apply on B0 an outlier detector considering outliers
points outside Pu or inside Pl with Pu and Pl convex polyhedra (Section 2).
(4) Get a multidimensional square inside the convex polyhedron Σ ∩ P ∩ Pu as
big as possible and representing data (Subsection 5.1, Fig. 1-(left)). (5) Get a
multidimensional rectangle Ru ⊂ Σ ∩ P ∩ Pu enlarging as much as possible the
square (Subsection 5.2, Fig. 1-(center)). (6) Repeat steps (4) and (5) replacing
P ∩ Pu with Pl and getting a rectangle Rl ⊂ Σ ∩ PL. (7) Decompose Ru \Rl in
smaller rectangles (Section 6).

A first approach for an algorithm to get a multidimensional rectangle en-
larging a multidimensional square as much as possible would get an exponential
complexity on the dimension. We provide a smarter algorithm with a linear
complexity.

2 Outlier detector

In this section we describe a method to detect outliers on new data. No knowl-
edge of TDA is needed. However the method would be much more precise if
applied on every sub-set of the data set obtained after a clustering or a division
in bins as in Mapper. Unfortunately there is not enough space to compare this
method with better known ones and to provide helpful figures. The main reason
why we adopt this method is that it returns convex polyhedra and this applies
well to our purpose.

Definition 2.1. A convex polyhedron P ⊂ Rd the intersection of a finite number

of half-spaces, namely it is a set of the form {x ∈ Rd | 〈w(1), x〉 ≤ w
(1)
0 , . . . ,

〈w(h), x〉 ≤ w
(h)
0 } for some h ≥ 1, w(1), . . . , w(h) ∈ Rd, w(i) 6= 0, and w

(1)
0 , . . . ,

w
(h)
0 ∈ R, where 〈v, w〉 is the standard inner product in Rd of v and w. The

hyperplanes {x ∈ Rd | 〈w(i), x〉 = w
(i)
0 } that intersect P are called facets of P .

The interior of a convex polyhedron is the sub-set obtained substituting all the
weak inequalities with strong inequalities. We consider also the empty set ∅ a
convex polyhedron.

We start from a data set {x(1), . . . , x(s)} ⊂ Rd whose elements are considered
not to be outlier. Two convex polyhedra, Pu and Pl, are constructed, we call
them respectively upper polyhedron and lower polyhedron. The basic idea is to
consider as outliers the points too far away from a central point (construction

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6. 
Available from http://www.i6doc.com/en/.  

550



of the upper polyhedron) and refine the result considering a hole around the
central point (construction of the lower polyhedron). The upper polyhedron Pu
contains the data set while no points of the data set are in Pl. The instances
outside Pu and inside Pl are considered outliers.

Let m̄ be the mean of the data set: m̄ := (
∑
i x

(i))/s. Let ε > 0 be a fixed
number, the more ε is close to 0, the more points are considered outliers.

For x, y ∈ Rd, d(x, y) =
√
〈x− y, x− y〉 is the distance between x and y.

For λ ≥ −d(x(i), m̄) the half-space Hλ(x(i)) ⊂ Rd is the one containing m̄, with
boundary hyperplane orthogonal to the line passing through m̄ and x(i), and
whose distance from m̄ is d(x(i), m̄) + λ.

Choose a positive integer ku as a parameter to smooth the rectangle. The
higher is ku the sharper is the region to avoid outliers and the higher is the
computational cost. The region Pu is the convex polyhedron obtained by the
following algorithm: start with Pu = Rd; remove m̄ from the data set; apply a
cycle with at most ku steps; in each step select the point x(i) with the maximum
distance from m̄, if all the starting data set is contained in P = Pu ∩Hε(x

(i)),
substitute Pu with P , in both cases remove the point x(i) from the list.

If there are points x(i) in the data set whose distance d(x(i), m̄) from m̄ is
lower equal than ε the convex polyhedron Pl is empty. Otherwise Pl is the
intersection of all the half-spaces H−ε(x

(i)).

3 Optimal sub-sets of the data set

Here we apply a method to divide the data set in sub-sets and make some
assumptions that will be discussed in Section 4.

Mapper [1] is a TDA method which divides the data set in sub-sets called
bins. These sub-sets can intersect themselves. Every such sub-set is a vertex of
a graph and the intersections correspond to the connections between vertices.

Let {x(1), . . . , x(n)} ⊂ Rd be the data set. Apply 1-dimensional Mapper on
the data set using the filter function f : Rd → R.

Assumption 3.1. The filter function f is linear: f(x) = 〈wf , x〉 for some
wf ∈ Rd.

By “optimal” points we mean points that are preferable than others, for
instance they could be execution settings of a production giving good products.
Let B0 be a set whose elements are considered optimal and is the union B0 =
∪jB0,j of connected bins B0,j related to consecutive intervals of the used covering
of R. Let (a, b) ⊂ R be the open interval corresponding to B0 in the covering of R,
and let B1, . . . , Bm, m ≥ 0, be the bins such that for all 1 ≤ i ≤ m, f(Bi) ⊂ (a, b)
and B0 ∩ Bi = ∅. Therefore all the elements x(i) ∈ B0 ∪ B1 ∪ . . . ∪ Bm satisfy
a < 〈wf , x(i)〉 < b.

Assumption 3.2. For every i > 0 the set B0 is almost linearly separated from

Bi, namely for each i > 0 there is a vector w(i) ∈ Rd and a scalar w
(i)
0 ∈ R

such that 〈w(i), x(j)〉 < w
(i)
0 and 〈w(i), x(h)〉 > w

(i)
0 almost for every x(j) ∈ B0
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and x(h) ∈ Bi. This can be studied applying a linear SVM (Support Vector
Machine).

4 First optimal region

In this section we describe the first optimal region of points in the space of data
and discuss the assumptions.

For Section 3, all the points in the following convex polyhedron P that are not
outliers can be considered optimal: P := {x ∈ Rd | 〈−wf , x〉 ≤ −a, 〈wf , x〉 ≤
b, 〈w(1), x〉 ≤ w(1)

0 , . . . , 〈w(m), x〉 ≤ w(m)
0 }.

Our assumptions are made to get the set P and to ensure that it is a convex
polyhedron and that {x(1), . . . , x(n)} ∩ P consists almost entirely of optimal
points. In some situations this could be reached also by the application of
a standard clustering algorithm. Mapper is preferable to standard clustering
methods for several reasons: connection between bins, visualization, detection
of zones, . . . (see for instance [1, 5]). One of the most performing choice of
filter function for Mapper is a principal component, this choice would make
Assumption 3.1 satisfied. Scrolling through this list of filters, and applying
Mapper in smaller data sets, we get both assumptions satisfied.

Apply on B0 the method to detect outliers on new data described in Section
2 producing the convex polyhedra Pu and Pl. We denote with Σ := {x ∈
Rd | xd−k+i = ci for i ∈ {1, . . . , k}} the (d−k)-plane defined by fixing the k ≥ 0
input settings. Therefore we are interested in Σ ∩ P ∩ Pu ∩ (Rd \ Pl). This set
is composed just of optimal points, has no outliers, its points respect the input
settings, and it is described just by a number of linear inequalities, hence it is
easy to determine wheter a point is inside it, but it is still not easy to select a
point inside it.

5 List of intervals of execution settings

This section explains how to get the multidimensional rectangles Ru ⊂ Σ∩P∩Pu.

5.1 The square

Here we aim to find a non empty (d− k)-dimensional square Cu ⊂ Σ parallel to
the axis such that all its elements are optimal and not outlier (see Fig. 1-(left)).

Definition 5.1. Let L = ((a1, b1), . . . , (ad, bd)) be an ordered list of pairs such
that for each j, aj , bj ∈ R ∪ {−∞,∞} and either −∞ ≤ aj < bj ≤ ∞ or
aj = bj ∈ R. We call rectangle of L the set

R = {x ∈ Rd | for each j, aj ≤ xj ≤ bj}.

An ordered family (v1, . . . , vd) ∈ (R ∪ {−∞,∞})d such that for every j, vj ∈
{aj , bj} is called vertex of R. The dimension of R is the number of components
j such that aj < bj . A square is a rectangle such that bj−aj = bh−ah for every
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j and h such that aj < bj and ah < bh. The quantity bj − aj > 0 is the side
length of the square, while the point m ∈ Rd, mj = (bj + aj)/2, is its center.

The center mu of the square Cu is a point in the interior of Σ ∩ P ∩ Pu that
represents well the elements of B0 close to Σ. If it is not possible to get one such
point, the algorithm stops, and a rectangle is not produced.

Take the maximum radius r > 0 for what B(mu, r)∩Σ is contained in P ∩Pu,
where B(mu, r) is the set of points with distance from mu at most r. This can
be easily obtained applying a minimum on the distances d(mu, Fi ∩Σ) between
mu and the hyperplanes Fi’s given by the inequalities that define P ∩ Pu. If
Fi∩Σ 6= ∅ the distance d(mu, Fi∩Σ) can be easily computed as point/hyperplane
distance in Rd−k after the application onmu and on Fi∩Σ of the map Rd → Rd−k
(x1, . . . , xd) 7→ (x1, . . . , xd−k).

Define the square Cu as the one centered in mu and with side length 2ru√
d−k .

This is the biggest square C centered in mu such that C ⊂ Σ ∩ P ∩ Pu.

5.2 Enlarging the square

In this subsection we enlarge the square Cu as much as possible getting the
(d − k)-dimensional rectangle Ru ⊂ Σ ∩ P ∩ Pu (see Fig. 1-(center)). A first
approach would get the result by a simple algorithm based on enlargements
vertex by vertex, hence getting an algorithm with exponential complexity on
the dimension d−k. We provide a smarter algorithm producing the same result
and having linear complexity on the dimension d− k.

The idea is as follows: Suppose k = 0 (Σ = Rd). Start taking the square
Cu as the rectangle Ru. Select a direction ±e(j) parallel to the axis (e(j) is the
j-th element of the standard basis of Rd). Select a central point m̄ ∈ F on the
facet F of Ru corresponding to this direction ±e(j). Let F ′ be the hyperplane
containing F . Push the facet F and the hyperplane F ′ along the direction ±e(j)
until the distance between m̄ and F ′∩∂(P ∩Pu) is equal to the distance d(m̄, v),
where v is any vertex of Ru ∩ F ′. The central point m̄ is constructed by cases
according to the limitations of coordinates of the rectangle studying where the
facet touches the boundary of the polyhedron for the first time. The distance
between the central point m̄ and a vertex v ∈ F ′ of the rectangle does not depend
on the choice of one such vertex and is easy to compute.

If k > 0, intersect Σ with P ∩ Pu, and with the hyperplanes Fi’s, apply the
projection Rd → Rd−k, x 7→ (x1, . . . , xd−k), then apply the method above.

6 Sharper list of intervals

Suppose that the lower polyhedron Pl, is not empty. Consider the point mu and
its reflections along facets of Pl. If one of these points is in the interior of Pl
we take it as central point ml for Pl, then we repeat the procedure of Section
5 taking Pl instead of P ∩ Pu and ml instead of mu. Hence we get a rectangle
Rl ⊂ Σ∩ Pl. Otherwise Rl is empty. The set Ru \Rl can be described as union
of rectangles.
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Remark 6.1. If we change the order of the variables xj , 1 ≤ j ≤ d − k, by a
permutation σ, we get the same square Cu but a different rectangle Ru,σ (see
Fig. 1-(right)). The algorithm to get a rectangle gives larger intervals to the first
coordinates. We can take advantage of this observation to get bigger intervals
for selected features or to get rectangles with bigger volumes.

7 Conclusions

We provided an algorithm for unsupervised, or semi-supervised, learning getting
a very simple description of a region in the space of data consisting of optimal
points that are not outliers and have some fixed coordinates. This can be very
useful in production optimization and predictive maintenance.

This work has three main original contributes and combines them together:
1. A discussion of all the assumptions and a method to satisfy them based on
TDA (Section 4, steps (1) and (2)). 2. An outlier detector for new data (TDA
is not needed but is useful) (Section 2, step (3)). 3. An efficient algorithm to
get a multidimensional rectangle enlarging a multidimensional square as much
as possible (TDA is not needed) (Subsection 5.2, step (5)).

Fig. 1: Rd = Σ = R2, (left) The biggest square inside P ∩ Pu centered in a
representative point of the sub-set of the data set. (center) The rectangle inside
P ∩ Pu obtained enlarging the square. (right) The rectangle obtained after the
non trivial permutation.
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