
Evolutionary RL for Container Loading

S Saikia1, R Verma1, P Agarwal1, G Shroff1, L Vig1 and A Srinivasan2

1- TCS Research - New Delhi

2- Department of Computer Science, BITS-Pilani, Goa

Abstract. Loading the containers on the ship from a yard, is an impor-
tant part of port operations. Finding the optimal sequence for the loading
of containers, is known to be computationally hard and is an example
of combinatorial optimization, which leads to the application of simple
heuristics in practice. In this paper, we propose an approach which uses
a mix of Evolutionary Strategies and Reinforcement Learning (RL) tech-
niques to find an approximation of the optimal solution. The RL based
agent uses the Policy Gradient method, an evolutionary reward strategy
and a Pool of good (not-optimal) solutions to find the approximation. We
find that the RL agent learns near-optimal solutions that outperforms the
heuristic solutions. We also observe that the RL agent assisted with a
pool generalizes better for unseen problems than an RL agent without a
pool. We present our results on synthetic data as well as on subsets of
real-world problems taken from container terminal. The results validate
that our approach does comparatively better than the heuristics solutions
available, and adapts to unseen problems better.

1 Introduction

The container shipping industry has been evolving lately in terms of the vessel
size and number of containers transported every day. Port operators want to
automate the planning of small vessels and focus manual effort only for large
ones. In this paper, we focus on the problem of generating the container loading
schedule from yard to a ship, such that properties of each slot on the ship matches
with that of the container to be filled. Container loading schedules that require
the least rearrangement of containers in the yard(shuffles) are most desirable[1].

Optimal container loading suffers from a non-polynomial increase of compu-
tation time with an increase in the number of containers. Therefore, heuristics-
based solutions are commonly used. In the real world, external factors often lead
to partial override of the planned loading sequence, leading to a worse loading
schedule in practice. We model this problem as a Reinforcement Learning(RL)
problem[2] that proposes the action to be taken in any current state, whereas
heuristic solutions need to re-calculate the entire sequence in such situations.

Despite the recent achievements of deep Reinforcement Learning (deep RL)
in complex gaming environments like Go [3] and for increasing energy efficiency
of cooling systems [4], the use of RL for scheduling problems has been limited
[5, 6]. To the best of our knowledge ours is the first attempt to solve container
loading problem using deep RL, while it has been used for other problems of
port operations such as container allocation in the yard [6] etc. Similar to RL,
evolutionary strategies have also been used to solve similar problems [7].

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

667

The key contributions of this paper are: 1) Formulation of the container
loading problem as an RL problem using a limited action space, 2) A solution to
container loading problem using an evolutionary variant of RL, i.e., maintaining
a pool of recently seen best solutions to train the agent using policy gradient,
3) Usage of an adaptive reward function to train the RL agent, and 4) Use of
domain motivated intermediate rewards.

2 Problem Description

Slots on a ship should be loaded with containers in a specific order such as
‘sea-to-shore’ to safeguard against ship tilting and an eventual topple event.
Therefore, we consider a ship as a sequence of slots which need to be filled in
order. Every slot has certain properties, such as ‘refrigerated’ where containers
with perishable items could be loaded. Combination of such properties of a slot
is represented by a unique mask-id. Containers to be loaded in these ship slots,
also have an associated mask-id, are stacked in a yard a priori. A container can
be loaded into a slot of matching mask-id only.

When loading these containers in ship slots, if a container with the same
mask-id as that of the next slot to fill, is not present in the yard on top of a
stack, the yard operator will need to re-arrange the containers before picking
the desired container. Such rearrangement is referred to as ‘shuffle’. The shuffle
count of a container is taken as the number of containers stacked on top of the
container. For example, in Fig. 1, the first slot of the ship (S0) can be filled
using any of three matching containers from the yard (0-0-0, 0-0-3, or 6-0-5).
Choosing 0-0-0 has no shuffle cost, choosing 0-0-3 will lead to a shuffle cost of 3
etc. The objective of container loading problem is to prescribe an order on the
containers kept in the yard, to load them in ship slots in sequence, keeping the
total shuffle count as low as possible.

3 Approach and Solution

3.1 Reinforcement Learning (RL) Formulation

Notations: We consider a sequence of ship slots {S1, ..., SN} in which containers
need to be loaded. The time step ti increments to the next time step ti+1 after
filling the current slot. Each slot is assigned one of the mask-id from the set
M = {m1, ...,mk}. All containers Ct = {c1, ..., cn}, stacked in the yard at time
t, are assigned unique mask-ids similar to ship slots. The function φ returns the
mask-id of a slot or container, i.e., φ : S∪C → M .Every container has a position
identified by three dimensional representation, P (cj) = {x, y, z}. Shuffle count
Q(cj , ti) of a container cj at time ti, is defined as the number of containers
placed above that container. Subset of Cti with matching mask-ids of a slot Si

is Cmt(Si, ti) = {cj}, s.t. φ(Si) = φ(cj), ∀cj ∈ Cti , where 1 ≤ i ≤ N, 0 ≤ j ≤ n.
The main objective of the container loading problem is to generate near-optimal
loading sequences of containers, with minimum total shuffle count.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

668

Fig. 1: An example of a state representation

Action Space: The RL environment keeps picking the target slot to fill in
a sequential manner. The action space becomes large with number of eligible
containers as possible actions. In order to reduce this and to leverage heuristic
optimization algorithms, our environment proposes a container cj ∈ Cti to be
filled in the current slot, and passes it to the agent. The agent only needs
to decide whether to agree with the environment’s proposition or ask for an
alternative container. Here, the environment proposes a container from the set
Cmt(Si, ti). If the agent chooses to agree with environment’s proposition, mask-
id of the container in the yard is marked with mask-id used for empty slots.
State Space: The state space comprises of: i) masking details of the ship
slots, i.e., a vector of mask-ids; ii) masking details of the containers in the yard,
i.e., a vector (flattened) of mask-ids; iii) target ship slot, i.e., one-hot vector
with 1 for current slot, and 0 otherwise; and iv) yard container proposed by
the environment, i.e., a one-hot vector. Fig. 1 depicts an example of state
representation, here a different color is used for every mask-id, and an integer
mask-id is indicated for every container and slot. The current slot to fill S0

and the set of the matching containers Cmt(S0, t0) are highlighted with red
rectangles.
Reward : We have used both final Rf and intermediate rewards Ri to facilitate
learning. Rf = 1 if the total shuffle count of the solution is smaller than a
threshold θ, and -1 otherwise. We use an evolving θ, i.e., the value of θ changes
as the RL agent learns. For the best solution encountered so far for a problem,
Rf = 2. The intermediate reward Ri, for picking a container cj is modeled
based on domain specific rule derived using i) shuffle count Q(cj , ti) of container
cj , and ii) number of good containers uncovered u(cj). A container is referred
to as a good container if it can be used to fill an upcoming slot, and it is said
to be uncovered if current action reduces its shuffle count in future. We model
intermediate reward as Ri = 0.1, if Q(cj , ti) = 0, or Ri = 0.05+0.1× u(cj)/6, if
Q(cj , ti) ∈ {1, 2}, or Ri = 0.1× u(cj)/6, if Q(cj , ti) = 3, and zero otherwise. It
ensures instantaneous feedback during training.

3.2 Training Procedure

We train the agent using policy gradient, which uses a deep feed forward neural
network (policy network). Generating a full sequence of containers to be loaded
for a problem is referred to as an episode. The agent uses the policy network to

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

669

decide whether it should agree with environment’s proposition such that it leads
to minimum total shuffle cost at the end of the episode. The episode terminates
if all slots in the ship are filled or if there are no containers left in the yard.

Running of an episode generates many state-action pairs and their corre-
sponding discounted rewards, vi = Ri + Rf × γt. Here γ is the discount factor
and t is the sequence number of the action (taken in reverse order of the episode).
If the episode is positively rewarded at the end we push all state-action pairs and
their rewards into a priority queue(based on their reward), hereafter referred to
as pool. We train the policy network at the end of every episode, picking top-K
state action pairs from the pool.

The training procedure involves many iterations of such training, here an
iteration includes E episodes of every problem configuration of training data.
We adopt an evolutionary rewarding strategy for training the RL agent, after k
(k < E) episodes of each problem, we change the value of θ to average shuffle
count of k episodes, if it is smaller. This results in an adaptive reward function.

Our intended loss for policy gradient is L =
∑

iAi log p(ai|si), where ai is
the action we sampled when the state si was observed and Ai is the advantage.
We want to increase the log probability for actions that worked and decrease it
for those that did not work, so we use the discounted reward of a state-action
pair vi as the value of Ai. Since this loss function is identical to categorical cross
entropy loss function, we use it for training the neural network.

3.3 Fusion of Evolutionary Strategy and Policy Gradient

When using pure policy gradient based training we find it hard to train the agent
because a) it does not generalize, i.e., after learning to solve some more problems,
it would forget to solve the problem which it could solve earlier b) finding the
right reward function to train on different problems is a challenge, since it always
agrees or always disagrees with environment’s proposition.

Our implementation of RL is a fusion of policy gradient and evolutionary
strategies (ES). ES uses a population of solutions to train a model. This popu-
lation of solutions is maintained based on an evolving threshold on an objective
function. The evolving threshold finally leads to a near optimal solution. For
each problem, we maintain a distinct pool of solutions to be used by the RL
agent to learn from using the policy gradient technique. This pool stores the
state-action pairs along with their rewards. When training the agent at the end
of an episode, we pick top-K episodes for the problem from the pool.

4 Experiments and Results

To evaluate our approach as described in Section 3, we generated synthetic data
inspired from the real data, and used it to train the RL agent as well as to test
the accuracy of our approach. The data contains 23 ship slots, of which 15 need
to be filled from a block of 49 containers organized as 7 stacks of containers each
having 7 containers in it. We use the real data to only test the RL system.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

670

Experiment <0 step ≤0 step <1 step ≤1 step >Optimal =Optimal
DRWP 4.5 86.3 5.6 61.9 64.5 35.4
DRP 18.9 89.6 8.7 62.1 64.2 35.7
IRWP 5.3 87.8 5.2 66.9 61.8 38.2
IRP 26.7 97.8 12.5 74.4 52.6 47.3

Table 1: Performance statistics (in %) of RL agent on synthetic data.

Baselines Approaches: Since the container loading problem can be mod-
elled as that of combinatorial explosion, it can be solved using backtrack search.
However, it takes in-ordinate amount of time to solve this problem with large
number of ship slots, i.e., for more than 24 slots, backtrack search takes many
days to converge. An approach where we pick a container considering k subse-
quent ship slots, is termed as k-step lookahead policy. In this paper, we present
a comparison of our approach with the 0-step lookahead, 1-step lookahead and
optimal result obtained using backtrack search. On a test set of 900 problems,
0-step policy gives optimal solution for 333 problems, 1-step policy gives for 522
problems and random policy for only 5 problems.

Environment : We design an OpenAI Gym (https://gym.openai.com) en-
vironment for the container loading problem, described in Section 3. The envi-
ronment proposes one of the matching containers for a target slot to the agent
randomly. If there are more than one matching containers present in a stack,
then the environment would propose the top-most container only.

Hyper-parameter Settings: The policy network of the agent takes state
space consisting 144(= 7× 7× 2 + 23× 2) input units. The neural network has
three hidden layers of size 128 × 64 × 32. During training, we update reward
threshold θnew = min(θcurr, avg shuffle ct), here avg shuffle ct is average shuffle
count of last 20 episodes. Thus, the network indulges in self-play, comparing
itself with its previous performances, and adapting the threshold to compute
the reward. At each timestep, top 50 good examples from the pool are used to
train the agent. Training dataset comprises of 80 problems from the synthetic
dataset. The training algorithm runs over a series of these 80 problems for four
iterations, playing N = 200 episodes per problem in each iteration. Evaluation is
conducted under these four experimental settings: delayed reward without pool
(DRWP), delayed reward with pool (DRP), intermediate and delayed reward
without pool (IRWP) and intermediate and delayed reward with pool (IRP).
The results are presented in Table 1. The intermediate reward is computed
after every timestep during training, whereas, the delayed reward is received
by the RL agent at the end of each episode. The results show that the agent
performs better with the proposed intermediate reward. Also, using a pool of
good examples during training helps the agent to generalize better on unseen
problems, as evident from the results.
The plots in Fig. 2 show the evolutionary behaviour of the RL agent as many
episodes run on a problem while performing self-play. It also shows how random,
heuristic, optimal and RL policies perform on a subset of training data. The
threshold in the first plot keeps dropping till the minimum shuffle count reaches
the optimal. We further evaluate the IRP model on real-world dataset of 11

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

671

problems. It performs at par with the 0-step policy on all 11 problems and
better on 5 problems. However, it is not able to match the results of the 1-step
policy. This is because the synthetic data used for training is different from the
real-world data as there is not much variation in mask-ids of containers in the
yard and the slots, in the latter. Also, in practice the yard is much larger and
we are yet to generalize our approach to solve such large problems.

Fig. 2: (a) Evolving threshold during training for a problem (b)Minimum shuffle counts
by various policies for 14 problems

5 Conclusion

We described and formulated container loading problem, as a reinforcement
learning problem, which is often needed at the shipping ports. We introduced
evolutionary Reinforcement learning, which uses a pool of good training exam-
ples, as normally performed in evolutionary learning. We have also demonstrated
that for the container loading problem evolutionary reinforcement learning per-
forms better than pure policy gradient learning. We also demonstrate that
domain based intermediate reward helps the RL agent in learning.

References

[1] Dirk Steenken, Thomas Winter, and Uwe T Zimmermann. Stowage and transport opti-
mization in ship planning. Springer, 2001.

[2] Richard S Sutton and Andrew G Barto. Reinforcement learning. Journal of Cognitive
Neuroscience, 1999.

[3] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
Nature, 2016.

[4] Richard Evans and Jim Gao. Deepmind ai reduces google data centre cooling bill by 40%.
2017.

[5] Wei Zhang and Thomas G Dietterich. A reinforcement learning approach to job-shop
scheduling. 1995.

[6] Yoichi Hirashima. An intelligent marshalling plan using a new reinforcement learning
system for container yard terminals. InTech, 2008.

[7] Sani Tijjani and Armagan Ozkaya. A comparison of reinforcement learning and evolution-
ary algorithms for container loading problem.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

672

