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Abstract. We present a simple idea to avoid catastrophic forgetting
when training deep neural networks (DNNs) on class-incremental tasks.
This means that initial training is conducted on a sub-task described by a
dataset D1, whereas re-training is conducted subsequently, on a sub-task
described by a dataset D2 that is composed of different classes. As our
recent work suggest that DNNs perform very poorly at this problem, we
propose a simple extension that proposes an individually trained readout
layer for each sub-task. While this is unproblematic for training, a cluster-
ing method (the oracle) is used at test time to determine which sub-task a
sample most likely belongs to. Experiments on simple benchmarks derived
from MNIST show the effectiveness of this method for which a dedicated
TensorFlow implementation is made available.

1 Introduction

The context of this article is the avoidance of an effect usually termed ”catas-
trophic forgetting” or ”catastrophic interference” [2] in deep neural networks
(DNNs) using the so-called multiple readout layer (MRL) technique. When
training a DNN incrementally, that is, first training it on a sub-task D1 and sub-
sequently re-training on another sub-task D2 whose statistics differ (see Fig. 2
for a visual impression), catastrophic forgetting (CF) implies an abrupt and
virtually complete loss of knowledge about D1 during re-training. A common
workaround is to retrain the DNN with samples defining D1, plus the samples
for D2. This works in many situations, especially when the cardinality of D1 is
moderate. When D1 becomes very large, and many slight additions D(1 + n)
are required, this strategy is very ineffective or outright infeasible,

Fig. 1: Illustration of the proposed MRL technique. At training time (left), the
DNN is trained normally, the readout layer to train being determined by the
sub-task, while at the same time training the oracle. At test time (right), it is
the (now fully trained) oracle that determines which readout layer is used to
obtain a classification.
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making the catastrophic forgetting issue critically important. This motivated
us to look into simple ways DNNs could be augmented to perform what is re-
quired. We provide here a proof-of-concept for the proposed MRL technique
(see Fig. 1) using a set of simple class-incremental visual problems constructed
from the well-known MNIST benchmark [5].

Related work In various forms, knowledge of the catastrophic forgetting effect
dates back to very early works on neural networks [2], of which modern DNNs
are a special case. Nevertheless, known solutions seem difficult to apply to mod-
ern DNNs trained in a purely gradient-based fashion. Recently, new approaches
specific to DNNs have been unveiled[3, 10, 4, 7, 8, 6, 9], some with the explicit
goal of preventing catastrophic forgetting[3, 4, 7, 8, 6, 9], while others [10] just
suggest that their methods induce a greater ”structural stability”.In [4] the au-
thors advocate determining the hidden layer weights that are most ”relevant”,
and punishing the change of those weights more heavily during re-training. In
[8], newly trained filters are constrained to be linear combinations of existing
ones, thus guaranteeing unimpaired performance on the original problem. The
incremental moment matching technique proposed in [6] aims, in a framework
of Bayesian neural networks, at matching the moment of the posterior distri-
bution of the network for the old and the new task. In the context of object
detection architecture, [9] proposed to limit catastrophic forgetting by modifying
the loss function.The iCaRL model proposed in [7] addresses class-incremental
learning in an essentially prototype-based architecture, with a focus on manag-
ing/updating the class-specific prototypes in an incremental fashion.
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Fig. 2: Basic scheme of incremental training experiments conducted in this ar-
ticle. Initial training is conducted using a sub-task D1 for T iterations, followed
by retraining on sub-task D2 for another T iterations. Both datasets differ in
their statistical properties; in this article, we model this by using different classes
from the MNIST benchmark for D1 and D2, or a different spatial permutation
of pixels from the same classes, or both. During both training and retraining,
performance on the test sets of D1 and D2 (derived from the MNIST test data)
are conducted.
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Fig. 3: Two prototypical experiments without (upper diagram) and with (lower
diagram) catastrophic forgetting. Each experiment is subdivided into initial
training on sub-task D1 (left-hand side, white background) and re-training on
sub-task D2 (right-hand side, gray background). The dark blue curve indicates
test performance on D1 during initial training, the red one test performance
on D1 ∪ D2 during re-training. The latter indicates unambiguously whether
catastrophic forgetting happens. The green curve gives test performance on D2
during re-training and shows whether D2 has been well learned or not.

1.1 Models

We use TensorFlow/Python [1] to implement or re-create all models used in this
article. The source code for all experiments is available at www.gepperth.net/

alexander/downloads/esann18.tar.gz. The proposed MRL technique (see
Fig. 1) could be in principle mounted ’on top’ of any neural network. Here, we
use a ’normal’ fully-connected (FC) feed-forward MLP with two hidden layers,
2 softmax readout layers SMi trained using cross-entropy, and the (optional)
application of dropout (D) and ReLU operations after each hidden layer. The
MRL technique proposes 2 readout layers here instead of a single one. Further-
more, a k-means clustering KMi implementing the oracle is associated to every
readout layer. Its structure can thus be summarized as Input-FC1-D-ReLU-
FC2-D-ReLu-FC3-SMi+KMi. The choice of i for a particular model follows
simple rules:

• During training, the readout layer is defined by the currently trained sub-
task (one readout layer per sub-task). K-means clustering corresponding
to this sub-task is performed on D1 in order to recognize samples coming
from it later, realizing the oracle

• During testing, the oracle determines to which sub-task a sample belongs.
This is achieved by running all clustering methods KMi on the current
test sample ~x. If there is a clustering method KMi∗ one of whose cluster
centers has the smallest distance to ~x, the corresponding readout layer
RLi∗ is used for generating a classification decision.

As the strategy uses one readout layer per sub-task, we need only two readout
layers for the present time. MRL can be turned off by always selecting readout
layer RLi and clustering algorithm KMi as RL1 and KM1. This case constitutes
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the baseline of a normal fully-connected DNN, which our proposed MRL/oracle
technique should outperform.

2 Datasets

The principal dataset this investigation is based on is MNIST[5]. Despite being a
very old benchmark, and a very simple one, it is still widely used, in particular in
recent works on incremental learning in deep networks[3, 10, 4]. As we will see,
MNIST-derived class-incremental problems are more than a sufficient challenge
for DNNs so it is really unnecessary to add more complex ones.

2.0.1 Permutation: DP10-10

This is the dataset used to evaluate incremental retraining in [3, 10, 4], so results
can directly be compared to those in [3, 10, 4]. It contains two sub-problems,
each of which is obtained by permuting each 28x28 image in a random fashion
that is different between, but identical within, sub-problems. Since both sub-
problems contain 10 MNIST classes, we denote this dataset by DP10-10, the ’P’
indicating permutation.

2.0.2 Exclusion: D5-5

This dataset contains two sub-problems that are obtained by randomly choosing
5 MNIST classes for the first sub-problem, and the remaining 5 for the sec-
ond, which leads to the identifier D5-5. For simplicity, we choose the classes as
0,1,2,3,4 and 5,6,7,8,9. To verify that results do not depend on this particular
choice of classes, we create two additional datasets where the partitioning of
classes is 0,2,4,6,8 –vs– 1,3,5,7,9 (D5-5b) and 3,4,6,8,9 –vs– 0,1,2,5,7 (D5-5c).

2.0.3 Exclusion: D9-1

We construct this dataset (containing two sub-problems) in a similar way as D5-
5, selecting MNIST classes 0–8 for the first sub-problem and the remaining class
9 for the second one. In order to make sure that no artifacts are introduced by
the arbitrary choice of the second sub-problem, we create two additional datasets
(D9-1b and D9-1c) where the second sub-problem contains MNIST class 0 and
1, respectively.

3 Experiments

The basic experimental paradigm is very simple: we test the baseline model
against the MRL/oracle technique (see Sec. 1.1) on all datasets described in
Sec. 2. Evaluation measure is the best test error on D1∪D2 during the complete
re-training period. It is imperative to consider the union of both sub-tasks
for evaluating a model, since a strong drop on D1 test performance could just
as easily be counteracted by an even faster rise in D2 test performance. For
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task D9-1a D9-1b D9-1c D5-5a D5-5b D5-5c DP10-10
acc. in % 97 98 99 96 97 97 99

Table 1: Performance of the oracle separating D1/D2 samples at test time.

task D9-1a D9-1b D9-1c D5-5a D5-5b D5-5c DP10-10
acc./oracle 96.0 98 93.5 94.5 94.5 94.5 93.75

acc./baseline 55.5 65.1 79.7 41.1 45.3 48.8 88.2

Table 2: Performance of the MRL model with oracle as compared to the baseline
model, a fully connected DNN. All accuracies are given in percent.

simplicity, we fix the topology of the used networks to two hidden layers of 400
neurons. We do not discuss topology variations here but just state that they did
not change the gist of the results although of course performance is impacted.
We always used an Euclidean distance measure and 500 cluster centers for all
clustering methods. A performance baseline is always the best performance of
any model during initial training. As in initial training, the used readout layer is
always taken to be 1, all models reduce to a simple fully-connected DNN in this
case. Another interesting quantity for evaluation is the classification accuracy
of the clustering methods, or to put it in another way: how well can the oracle
determine the provenance of a single test sample?

3.1 Accuracy of the oracle

The accuracy of the oracle is given in Tab. 1 and shows that, with the chosen
parameters, a near-perfect oracle can be achieved at least on MNIST, largely
independently of the partitioning of the classes.

3.2 Accuracy of the MRL model with oracle

As can be seen from Tab. 2 and Fig. 4, MRL with an oracle outperforms the
baseline model of a fully-connected DNN by a large margin. Furthermore, we

Fig. 4: Graphical representation of class-incremental learning progress. Left:
baseline model, right: MRL with oracle. All curves indicate test accuracies.
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can see that MRL with oracle maintains a stable performance on D1 ∪ D2
independently of retraining time, removing the necessity to find the exact right
moment to stop retraining. We observe as well that the baseline model does
well on the task DP10-10, however this seems to be a task that does not incur
catastrophic forgetting in any model (see [3, 10, 4]), so it should not be taken
too seriously.

4 Discussion

We presented a simple technique to give fully-connected DNNs the ability to
learn incrementally. A modest evaluation is conducted on MNIST to give a proof-
of-concept which is all that is intended here. All evidence is purely empirical, and
we can offer no proofs why and when our model should perform well, other than
stating that the readout layer is the layer closest to the source o the gradient in
a DNN, and that it is therefore most subject to change when statistics change.
Protecting this layer in particular therefore seems a sensible thing to do. Next
steps will obviously include tests on more challenging datasets, as well as a
rigorous parameter search, as well as an extension to other types of DNNs such
as CNNs.
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