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Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil

2- Universidade Federal de Minas Gerais (UFMG) - Dept. of Electrical Engineering
Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG - Brazil

3- Instituto Federal do Norte de Minas Gerais (IFNMG)
Rua Coronel Luiz Pires, 202, Centro, Montes Claros, MG - Brazil

4- Instituto Federal de Minas Gerais (IFMG) - Campus Sabará
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Abstract. Most applications deal with unconditional variance of the time
series. Fuzzy time series allow an inexpensive computation to forecasting
dynamic processes and uncertainties. In this paper we have extended the
concept of nonstationary fuzzy sets to Fuzzy Time Series, termed Non-
stationary Fuzzy Time Series (NSFTS). While some models require new
data before adapting, the NSFTS is capable of adapting to heteroskedastic
time series. In the experiments, NSFTS outperformed other known FTS
methods with box-cox transformations available. Statistical tests in three
different datasets indicate that the results achieved by the proposed model
are either superior or non-inferior to other FTS models.

1 Introduction

In order to deal with vagueness and imprecise knowledge in time series data,
Fuzzy Time Series (FTS) were introduced by Song and Chissom [1]. FTS are
based on Fuzzy Set Theory first proposed by Zadeh [2]. Some of the data
allow parameter variability, suggesting a lack of stationarity, i.e. unconditional
instants where time series may vary over time [3, 4]. Unlike homeoskedastic time
series, the data variance changes over time and, because the information that is
inherent to the data generating system is not in the model, the magnitude of
the prediction errors increases with time.

Since most of real-world applications are concerned with dynamic processes
and uncertainties, the problem has motivated reviews [5, 6], forecasting applica-
tions [3, 4, 7] and new design methodologies [8, 9]. These articles and research
works consider the nonstationarity of time series but because of the nature of
accumulated uncertainty in FTS modeling, the literature focused on investigat-
ing nonstationary data: no paper ever addressed extensions of nonstationary
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fuzzy sets (NSFS) presented by Garibaldi et al. [10] to FTS in order to inves-
tigate heteroskedasticity i.e. temporal variability of variance [4] in time series.
Therefore, those analyses may be over-simplifying.

We propose to term this new approach Nonstationary Fuzzy Time Series (NS-
FTS). Its purpose is predicting trends and scale changes in time series. Because
it relies on NSFS the model should be able to keep itself updated without requir-
ing any new training, as long as there is no break in the trend. Some models ask
for new data before adapting. For instance, in offline learning, when the data
is known and has a definite trend, one can try to model the trend and remove
it from data so that one can apply usual methods. Regarding online learning
or streaming, NSFTS appears to be best suited because it automatically deals
with changes in trend and variance.

2 Preliminaries

2.1 Fuzzy Time Series

There are several categories of FTS methods, varying mainly by their order and
time-variance. The order is the number of time-delays (lags) that are used in
modeling the time series. Given the time series data F , First Order models
need F (t − 1) data to predict F (t) ones while Higher Order models require
F (t − 1), . . . , F (t − k) data to predict F (t). According to Song and Chissom
[1], FTS starts with an univariate time series Y (t) ∈ R1, for t = 0, 1, . . . , T ,
where the Universe of Discourse (UoD) U is delimited by the known bounds of
Y (t), such that U = [min(Y ),max(Y )]. Fuzzy sets Ai are defined upon U , for
i = 1 . . . q, each one with its own membership function (MF) µAi . F (t) is a
Fuzzy Time Series over Y (t) if F (t) = µAi(Y (t)) is the collection of fuzzyfied
values of Y (t) for i = 1 . . . q and t = 0, 1, . . . , T . Fuzzy time series F (t) can also
be seen as a Linguistic Variable and the fuzzy sets Ai as their linguistic values.

Suppose F (t− 1) = Ai1, F (t− 2) = Ai2, F (t− 3) = Ai3, . . ., F (t− p) = Aip

and F (t) = Aj . The high order fuzzy logical relashionship (FLR) can be defined
as Ai1, Ai2, Ai3, · · · , Aip → Aj where Ai1, Ai2, Ai3, · · · , Aip is the left-hand side
(LHS) and Aj is the right-hand side (RHS) of the FLR. Based on Chen’s model
[11], these FLRs can be grouped into the FLRG since they have the same fuzzy
sets on the LHS.

2.2 Nonstationary Fuzzy Sets

Based on the assumption by Garibaldi et al. [10], “the ability of FST to model
and/or minimize the effects of uncertainty is restricted”, since the data can vary
with time. Thus, through a slight variation in the MF, the NSFTS could be able
to deal with the incorporation of variability into decisions over time. NSFS
are based on two functions: µ(x): the membership function, µ ∈ (0, 1); and
p(µ, t) the perturbation function that alters the parameters of the function µ by
a temporal parameter t.
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NSFS shape changes along time, given the parameter t. This change can take
any form, including at random. According to Garibaldi et al. [10] these forms
of the nonstationarity can be formalized as: a) variation in location: translate
the parameters of µ function along the UoD, without changing its shape; b)
variation in width: Change the shape of µ, stretching or contracting its bounds;
and c) noise variation: Adds random noise (for instance White Gaussian Noise
(WGN), x ∼ N(0, 1)) to the membership grade.

3 Nonstationary Fuzzy Time Series

Nonstationary Fuzzy Time Series provides FTS with an incremental compo-
nent capable of representing mean and time variations observed over time. This
component is identified during the training process and embedded in the pertur-
bation function mentioned previously. Then, it is applied to the model during
the forecasting step. The next subsections describe the training and forecasting
steps.

3.1 Training Procedure

In order to identify the perturbation function, a segmentation of the time series
is performed. The observations are split into sliding windows, which are intervals
where mean and variance parameters present smaller variations. Given a training
set D with n instances, consider sliding windows of size w and a parameter d for
the order of perturbation functions. The training process is described below.

1. Define the Universe of Discourse (UoD) based on D. Define a partition of
the UoD into K even-length fuzzy sets Ai with triangular MF µi(·) where
i ∈ {1, 2, · · · ,K}.

2. Learn the fuzzy logical relationships and the FLRGs using D;

3. Split D into dj sliding windows where j ∈ {1, 2, · · · , (n/w)} ;

4. For each subset dj ∈ D

(a) Find Ymax,j = max(Y (t) ∈ dj) and tmax,j = time at Ymax,j ;

(b) Find Ymin,j = min(Y (t) ∈ dj) and tmin,j = time at Ymin,j ;.

5. Interpolate polynomials for location perturbation functions:

(a) The lower polynomial pl1, order d, is interpolated with (Ymin,j ; tmin,j);

(b) The upper polynomial plK with order d is interpolated with data
(Ymax,j ; tmax,j);

(c) The intermediate polynomials pls, s ∈ {2, 3, . . . (K − 1)}, are deter-
mined by the linear interpolation between pl1 and plK parameters.

6. Interpolate polynomials for width perturbation functions:
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(a) (b) (c)

Fig. 1: Synthetic datasets for model evaluation

(a) Compute the values of the location polynomial pli, i ∈ 1 . . .K, for
t ∈ 0 . . . n;

(b) Compute the distance wt between each pair of location polynomials
pli and pli+1 for t ∈ 0 . . . n;

(c) The width polynomials pwi , ∀i ∈ 1 . . .K with order d are interpolated
with (wt; t) data.

7. For each fuzzy set Ai with triangular MF µi(·), add the location and width
perturbation functions pli and pwi , where i ∈ {1, 2, · · · ,K}.

3.2 Forecasting Procedure

Given a time series Y (t), for t = 1, 2, . . . , L, where L is the number of lags (order)

1. Compute the membership grade µi(Y (t)) for each nonstationary fuzzy set
Ai, perturbed by the width and location functions with parameter t;

2. Select FLRG’s where the fuzzy sets Ai in the LHS have µi > 0;

3. For each selected FLRG k, compute the mean point mpflk(t):

mpflk(t) =

∑
j∈RHS mpj(t)

|RHS|
(1)

where mpj(t) is the mean point of a fuzzy set Aj

4. Compute the forecast as:

Y (t+ 1) =
∑
i∈K

µi(Y (t)) ·mpfli(t) (2)

4 Empirical results

To measure the performance of the proposed method, three synthetic datasets
with unconditional heteroskedastic behavior were generated: Figure 1a, dataset
A: increasing mean and variance. Figure 1b, dataset B: constant mean and in-
creasing variance. Figure 1c, dataset C: increasing mean and constant variance.
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Each dataset had 1000 instances and a sliding window cross validation methodol-
ogy was applied, using a working set of 300 instances, divided in 70% for training
(in-sample) and 30% for testing with a sliding increment of 30 instances, totaliz-
ing 25 experiments for each tested method. The accuracy metric to evaluate the
models was the Symmetrical Mean Average Percent Error (SMAPE), defined as

SMAPE = 1
n

∑n
i=1

|Yi−Ŷi|
|Ŷi|+|Yi|

, where Y is the correct value, Ŷ is the forecasted

value and n is the number of instances.
NSFTS was tested against known FTS methods in the literature: the tradi-

tional Fuzzy Time Series (FTS) [1], Conventional FTS (CFTS) [11], Weighted
FTS (WFTS) [12], Improved Weighted FTS (IWFTS) [13], Trend Weighted
FTS (TWFTS) [14], Exponentially Weighted FTS (EWFTS) [15] and High Or-
der FTS (HOFTS) [16]. For these methods a Box-Cox transformation [17] was
applied to normalize the data and allow these methods to deal with this kind
of nonstationary time series. All methods were trained with a grid partitioning
scheme, the number of partitions varying in the interval [5, 100] and the high or-
der models were tested with orders 2 and 3. The best performing models where
chosen for each method.

Fig. 2: Experiments results

It can be seen in Figure 2 that the NSFTS outperformed the other FTS
models on average for datasets A and C and tied with CFTS, EWFTS, WFTS
and IWFTS on dataset B. Statistical significance tests show that for all datasets,
the proposed NSFTS model SMAPE mean was either superior or non-inferior
to the other FTS models, considering a 95% significance interval. For dataset
A, NSFTS mean was statistically superior to all methods but EWFTS, WFTS
and IWFTS. For dataset B, it was superior to HOFTS2 and HOFTS3. Finally,
it was superior to FTS, IWFTS and CFTS for dataset C.
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It is interesting to note that NSFTS performed best (in comparison to other
methods) on dataset A, which presents both increasing mean and variance. This
might be an indication that the proposed method’s performance is less affected
by these characteristics than the other FTS methods.
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