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Abstract. Attention mechanisms have been shown to improve recurrent
encoder-decoder architectures in sequence-to-sequence learning scenarios.
Recently, the Transformer model has been proposed which only applies
dot-product attention and omits recurrent operations to obtain a source-
target mapping [5]. In this paper we show that the concepts of self- and
inter-attention can effectively be applied in an image-to-text task. The
encoder applies pre-trained convolution and pooling operations followed
by self-attention to obtain an image feature representation. Self-attention
combines image features of regions based on their similarity before they
are made accessible to the decoder through inter-attention.

1 Introduction and Background

Sequence-to-sequence learning, involving the mapping of two variable-length se-
quences, has been an active area of research in the last decade. Recently, neu-
ral encoder-decoder architectures have become be the predominant approach to
this task, yielding state-of-the-art results while being trainable in an end-to-end
fashion. Such architectures usually consist of two sub-networks, namely an en-
coder and a decoder. The encoder, typically a recurrent neural network (RNN),
first encodes the source sentence and produces a context vector. This vector
is then decoded by the decoder RNN to predict a target sequence [1]. First
compressing source information into an intermediate vector representation and
then extracting target information from it allows mapping any type of sequences
independently of their representation and length.

However, one often occurring problem in such architectures is a loss of in-
formation due to the compression step. This becomes especially evident when
dealing with long and complex sequences where all the necessary information
cannot be efficiently stored in a single, fixed-length context vector. Attention
mechanisms have been shown to improve this issue by considering not only one,
but distinct context vectors during decoding [4, 2]. These context vectors are
obtained by a weighted combination of the source sentence constituents. The
weights applied are often called attention weights, indicating that the model is
able to dynamically allocate attention to the most relevant parts of the source
sequence at every decoding step.

While such models yield good results, they tend to take a long time to train
due to the recurrent computations in both the encoder and the decoder that can-
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not be parallelised. This drawback becomes especially severe when facing long
sequences. In order to circumvent such limitations, Kalchbrenner et al. pro-
posed the Bytenet model [6], which does not make use of any recurrence during
training by applying dilated convolution and stacking a dynamically unfolding
decoder on top of the encoder. This allows producing the whole target sequence
prediction in one pass, where computation scales linearly with sequence length.

Vaswani et al. recently proposed a model that even surpasses Bytenet in
terms of performance and computational efficiency in a neural machine transla-
tion task by eschewing recurrence and convolution altogether [5]. This model,
called the Transformer, relies only on attention operations to transduce se-
quences. Self-attention serves as a way to obtain a feature representation (en-
coding) based on the similarity of sequence constituents. Inter-attention allows
information flow from the encoder to the decoder where, similar to previous at-
tention mechanisms, attention can be allocated to relevant parts of the source
sequence.

While the Transformer has only been used in text-to-text learning scenar-
ios, we show that a similar architecture can effectively be applied to images
as well in a captioning task where multiple observations from an image are
obtained to describe the depicted scene. Self-attention on image features ap-
pears to be supportive here as it enables the model to group and combine re-
gions with coherent content before making them accessible to the decoder. We
show that an attention-based architecture can be a faster-to-train alternative to
approaches that apply a recurrent encoder-decoder architecture with attention
mechanism [3].

2 Model Architecture

Our proposed model builds upon the transformer model by Vaswani et al. [5]
but has modifications mainly on the encoder side, enabling the processing of im-
ages instead of text and allowing to compute spatial self-attention. The overall
architecture is depicted in figure 1 and consists of an encoder and a decoder.
While the encoder obtains a source encoding, the decoder obtains a target en-
coding and combines both encodings via source-target mapping. While source
and target encoding both involve self-attention, source-target mapping involves
inter-attention and thus permits information flow from encoder to decoder.

2.1 Encoder

Source Encoding: The encoder contains two sequentially arranged self-attention
layers each involving multi-head self-attention followed by a feed-forward oper-
ation. A detailed description of the attention operations can be found in sec-
tion 2.3. The output of the second self-attention layer is made accessible to
the decoder during inter-attention. Before applying self-attention, the input im-
age is first fed to a pre-trained convolutional neural network (CNN) to extract
descriptive image features. Since pooling and standard convolution operations
diminish the spatial resolution, feature maps of VGG-11 net [7] are used after
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a convolution layer that still retains a spatial resolution of 14 × 14. Computed
image features of these regions are subsequently equipped with a positional en-
coding and then passed to the self-attention layers. As positional encoding, the
same sinusoidal function as presented in [5] is used.

2.2 Decoder

The decoder consists of four layers each involving target encoding and source-
target mapping. An embedding of the target caption (shifted one position to
the right) followed by positional encoding is obtained before accessing the first
decoder layer. The output of the last decoder layer is passed to a linear operation
followed by softmax to obtain the final target word predictions.

Target Encoding: Multi-head self-attention is also applied to the target
caption. Making use of an encoding of the whole target sequence might first
appear counterintuitive as the model is desired to produce the target itself in
an autoregressive fashion. However, producing one word at a time would pre-
vent parallelisation in the decoder. For this reason, the actual target sequence
is fed to the decoder during training instead of the previous emitted output.
This resembles a form of permanent teacher forcing. In order to still assure
the autoregressive property needed later during inference, attention masking is
applied to the self-attention weights. Masking restricts words of the caption to
only attend to those at a previous position in the sequence.

Source-Target Mapping: After having obtained a source and a target
encoding, multi-head inter-attention between both is applied to combine infor-
mation. This is followed by a feed-forward operation on the attention result.

2.3 Attention

Attention weights between constituents of two representations can be obtained
by first projecting both to a new feature space and then calculating the dot
product. Vaswani et al. describe this process as comparing a query to key-value
pairs, where queries, keys and values are all linear projections:

Q = Qinput ·WQ, K = Kinput ·WK , V = Vinput ·WV (1)

where WQ,WK ,WV ∈ Rh×dfeat×dattn . The number of attention heads is hereby
represented by h, dfeat represents the number of initial image or text features
and dattn = dfeat/h is the new feature dimension used to calculate attention.
We set h = 8, dfeat = 512 and dattn = 64.

After linear projection, attention weights aQ,K are calculated by applying a
soft-max operation to the scaled dot product between queries and keys:

aQ,K = softmax(
Q ·KT

τ
), τ =

√
dlen + dattn (2)

where the scaling factor τ is chosen to account for dattn, as well as for dlen
which represents the spatial (in case of an image) or temporal (in case of text)
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Fig. 1: Model architecture: Self-attention and inter-attention weights for a single
query position shown in red and green respectively. For simplicity, image feature
maps of 14× 14× 512 are depicted as 2× 2× 5. Word embeddings also have a
feature depth of 512.

dimensionality of the keys. This is different to the implementation of Vaswani et
al. which does not involve adding dlen when calculating τ . We found increasing
τ this way to be beneficial when facing the allocation of soft-attention to many
positions as it enforces to spread attention instead of focusing only on a single
entry.

Multi-head attention results are subsequently obtained by multiplying at-
tention weights with the values V : MultiHead = aQ,K · V , which results in
Multihead ∈ Rh×dlen×dattn . Appending all multi-head attention results along
the h dimension and applying a further linear projection results in the final
attention output that has the same dimensionality as the initial input to the
attention operation:

Attn = cat(Multihead
(dlen×dattn)
1 , ...,Multihead

(dlen×dattn)
h ) ·WO (3)

where WO ∈ Rdfeat×dfeat . Finally, a residual connection is applied, followed by
layer normalisation [10]: AttnOut = LayerNorm(Attn+ Vinput).

Self-attention: In self-attention, the similarity between constituents of a
single input is to be calculated. Thus, query, keys and values all take the same
values: Qinput = Kinput = Vinput.

Inter-attention: In inter-attention, the similarity of a target to a source is
to be calculated. Thus: Qinput = target and Kinput = Vinput = source.
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2.4 Feed-Forward Operation

A feed-forward operation with a Relu activation function is applied to the result
of attention in both the encoder and the decoder:

FeedForward(x) = Relu(x ·W1 + bb1) ·W2 + b2 (4)

where W1 ∈ Rdfeat,dhidden and W2 ∈ Rdhidden,dfeat . We set dhidden = 2 · dfeat =
1024. Afterwards, a residual connection is applied, followed by layer normalisa-
tion: FFOut = LayerNorm(FeedForward(x) + x).

3 Results

We train and evaluate the proposed model on image-captions of the MS COCO
2014 dataset [8]. Captions are restricted to have a maximum length of 14 words
during training. Optimisation is achieved by reducing the crossentropy loss
between predicted and actual target captions using the Adam optimiser [9] with
a learning rate of l = 0.0003. As a regularisation method, we apply dropout
with a probability of P = 0.1 to the caption embeddings and image features as
well as to the attention weights [5]. The model is trained for only 11 hours on a
single NVIDIA Tesla K80 GPU. In our experiments we found training a simple
recurrent model to take at least 20 hours to obtain reasonable results.

Table 1 shows quantitative results. Qualitative results of learned attention
weights are depicted in figure 2. Spatial inter-attention assigns higher weight to
pixel regions that contain relevant information when producing a word. Atten-
tion can be distributed independently over the 14× 14 regions.

A dog catching a frisbee and running across a !eld.

A man returning a ball with a tennis racket .

Fig. 2: Inter-attention weights attending to relevant parts of the input image
associated with query words of the captions.
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Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR
Show, Attend and Tell [3] 71.8 50.4 35.7 25 23.9
Proposed Model 66.7 46.4 31.2 22.6 21.8

Table 1: Bleu precision and METEOR score obtained on the MS-COCO 2014
dataset.

4 Conclusion

In this paper we have shown that a network relying primarily on attention opera-
tions can efficiently be applied to image captioning. Self- and inter-attention can
serve as powerful tools to obtain a rich feature representation while being faster
to train than recurrent operations due to parallelisable computation. Further
work has to be done to improve the model’s performance. Architectural choices
encouraging the model to rely more heavily on image features than on previously
produced words might improve the quality of generated captions. Also, it might
be interesting to investigate the performance when solely applying self-attention
to the input images and not making use of convolution at all. However, our
interpretation is that convolution serves as a good basis to obtain descriptive
image features that can then be combined with self-attention. Applying strided
instead of regular convolution could avoid diminishing the spatial dimension,
allowing to apply self-attention on a pixel level rather than on pixel regions.
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