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Abstract. Variable selection is fundamental to high-dimensional sta-
tistical modeling, and is challenging in particular in unsupervised mod-
eling, including mixture models. We propose a regularised maximum-
likelihood inference of the Mixture of Experts model which is able to deal
with potentially correlated features and encourages sparse models in a
potentially high-dimensional scenarios. We develop a hybrid Expectation-
Majorization-Maximization (EM/MM) algorithm for model fitting. Un-
like state-of-the art regularised ML inference [1, 2], the proposed modeling
doesn’t require an approximate of the regularisation. The proposed algo-
rithm allows to automatically obtain sparse solutions without thresholding,
and includes coordinate descent updates avoiding matrix inversion. An ex-
perimental study shows the capability of the algorithm to retrieve sparse
solutions and for model fitting in model-based clustering of regression data.

1 Introduction

Mixture of Experts (MoE) models introduced by [3] are widely used in statistics
and machine learning. MoE is a fully conditional mixture model where both the
mixing proportions, i.e, the gating network, and the components densities, i.e,
the experts network, depend on some input covariates. This makes MoE more
capable in use than standard unconditional mixture distributions, while having
a neural-network interpretation. A general review of the MoE models and their
applications can be found in [4]. For continuous data, which we consider here
in the context of regression and clustering, MoE usually use Gaussian experts.
While the MoE modeling with maximum likelihood inference is widely used, its
application in high-dimensional problems is still challenging due to the known
problem of the ML estimation (MLE) in such a setting, and hence there is a
need to select a subset of the potentially large number of features, that really
explain the problem. Indeed, in high-dimensional setting, the features can be
correlated, present redundancy, etc, and thus the actual features that explain
the problem lie in a low-dimensional space. This can be achieved by regularizing
the objective function so that to encourage sparse solutions.

In related mixture models, including mixture of linear regressions (MLR),
where the mixing proportions are constant, [5] proposed regularized ML infer-
ence, including MIXLASSO, MIXHARD and MIXSCAD and provided some
asymptotic properties corresponding to these penalty functions. Another L1 pe-
nalization for MLR models for high-dimensional data was proposed by [6] and
an adaptive Lasso penalized estimator with oracle inequality which includes the
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setting p � n was presented. [7] provided an L1-oracle inequality by a Lasso es-
timator for finite mixture of Gaussian regression models. This result can be seen
as a complementary result to [6], by studying the Lasso for its L1-regularization
properties rather than considering it as a variable selection procedure. This
work was extended later in [8] by considering a mixture of multivariate Gaus-
sian regression models. When the set of features can be seen as to be splitted
into groups, [9] introduced the two types of penalty functions called MIXGL1
and MIXGL2 for MLR models, based on group Lasso. An MM algorithm [10]
version for MLR with Lasso penalty can be found in [11]. Their method allows
for an avoidance of matrix operations. In [1], the author extended his MLR
regularisation to the MoE setting and provided a root-n consistent and oracle
properties for Lasso and SCAD penalties and developed an EM algorithm [12]
for fitting the models. However, as we will discuss it in section 2.2, this is based
on approximated penalty function, and uses a Newton-Raphson in the updates,
which requires matrix inversion.

In this paper, we consider MoE models with regularisation as in [1] and pro-
pose a regularised maximum-likelihood inference which doesn’t require an ap-
proximate of the regularisation. We develop a hybrid Expectation-Majorization-
Maximization (EM/MM) algorithm for model fitting. The proposed algorithm
allows to automatically select sparse solutions without thresholding, and includes
coordinate descent updates avoiding matrix inversion. The rest of this article is
organized as follows. In Section 2 we present the regularised maximum-likelihood
strategy or the MoE model and the proposed EM/MM algorithm with coordi-
nate descent in section 2.3. An experimental study on simulated and a real-data
example are given Section 3. Finally, in Section 4, we draw concluding remarks.

2 Regularised Mixture of experts

2.1 The mixture of experts (MoE) model

Let (Y1, . . . , Yn) where Yi ∈ R be an independent random sample of heteroge-
neous observations for some given covariate vectors (x1, . . . ,xn), xi ∈ R

p, and
let Zi ∈ {1, . . . ,K} be a latent categorical random variable representing the
hidden partition of the data into a K clusters. The MoE model decomposes the
density of Y given x into a convex sum of K experts densities weighted by a
gating network, and can be defined as

f(yi|xi;θ) =

K∑
k=1

πk(xi;w)f(yi|xi;θk) (1)

where πk(xi;w) = ewk0+x�
i wk/

∑K
l=1 e

wl0+x�
i wl are the gating softmax functions

for k = 1, . . . ,K with (wK0,wK) = (0, 0) for identifiability. For continuous data
like here, we can use Gaussian experts. Furthermore, for data that represent
regression functions (i.e for prediction), a common choice is Gaussian regressors
for the expert network and we thus have f(yi|xi; θk) = N (yi;βk0 + x�

i βk, σ
2
k).

The model parameters θ is commonly estimated by maximizing the log-likelihood

L(θ) =
n∑

i=1

log
[ K∑
k=1

πk(xi;w)N (yi;βk0 + x�
i βk, σ

2
k)
]
by using EM [12, 3].
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2.2 Regularised maximum-likelihood estimation of the MoE

We propose to infer the MoE model by maximizing a regularised log-likelihood
criterion where the regularization combines a Lasso penalty for the experts pa-
rameters, and an Elastic-Net like penalty for the gating network, defined by:

PL(θ) = L(θ)−
K∑

k=1

λk‖βk‖1 −
K−1∑
k=1

γk‖wk‖1 − ρ

2

K−1∑
k=1

‖wk‖22. (2)

A similar strategy were proposed in [1] where the author proposed a regularized
ML function like (2) but which is then approximated in the model inference
algorithm. The devoloped EM algorithm for fitting the model follows indeed the
suggestion of [2] to approximate the penalty function in a some neighbourhood
by a local quadratic function. Therefore, the Newton-Raphson method could be
used to update parameters in the M-step. The weakness of this design is that
once a feature is set to zero, it may never reenter the model at a later stage of
the algorithm. To avoid this numerical instability of the algorithm due to the
small values of some of the features in the denominator of this approximation,
[1] replaced that approximation by an ε-local quadratic function. Unfortunately,
these strategies have some drawbacks. First, by approximating the penalty func-
tions with (ε-)quadratic functions, almost surely none of the components will be
exactly zero. Hence, a threshold should be considered to declare a coefficient
is zero and this threshold affects the degree of sparsity. Secondly, it cannot
guarantee the non-decreasing property of the EM algorithm of the penalized ob-
jective function. Thus, the convergence of the EM algorithm cannot be ensured.
Finally, one has to choose ε, which becomes an additional tuning parameter in
practice. Our propoal gives and answer to overcome these limitations.

2.3 Model inference with a block-wise EM/MM algorithm

We propose a block-wise EM algorithm, which integrates an MM algorithm [10]
for updating the gating parameters, to monotonically find local maximizers of

(2). Instead of maximizing the objective function Q(w; θ(s)) we maximize the

surrogate functionG(s)(w|wm) which satisfiesQ(w(s); θ(s)) = G(s)(w(s)|w(s)) ≤
G(s)(w(s+1)|w(s)) ≤ Q(w(s+1); θ(s)) and the MM algorithm forces the objective
function to increase, since there is no approximation. We construct the surrogate
function using arithmetic-geometric mean inequality. This function is convex and
has a separable structure. So to maximize it we just need to use one-dimensional
Newton-Raphson algorithm and hence avoid computing the inverse matrix.
Our EM/MM algorithm performs as follows. Given an initial parameter vector

θ(0), it performs, that the (s+ 1)th iteration:

E-step: Compute the conditional expectation τ
(s)
ik of the missing labels

τ
(s)
ik =P(Zi = k|xi, yi;θ

(s))=πk(xi;w
(s))N (yi;β

(s)
k0 + x�

i β
(s)
k , σ

(s)2
k )/f(yi;xi,θ

(s)). (3)

M-step: Udapte the parameters by maximizing the well-known Q function.
The parameters w are updated by maximizing the function

Q(w;θ(s)) =

n∑
i=1

K∑
k=1

τ
(s)
ik log πk(xi;w)−

K−1∑
k=1

γk‖wk‖1 − ρ

2

K−1∑
k=1

‖wk‖22; (4)
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For that we propose an MM algorithm and construct the minorizing function

G(s)(w|wm) =
n∑

i=1

K−1∑
k=1

τ
(s)
ik (wk0 +x�

i wk)+G1(w|wm)−
K−1∑
k=1

γk‖wk‖1 − ρ
2

K−1∑
k=1

‖wk‖22;

where G1(w|wm) =
n∑

i=1

[
−

K−1∑
k=1

πk(xi;w
m)

p+1

p∑
j=0

e(p+1)xij(wkj−wm
kj ) − logCm

i + 1 − 1
Cm

i

]
,

with Cm
i = 1 +

K−1∑
k=1

ew
m
k0+x�

i wm
k , xi0 = 1. We then fix σk, and update βkj in

Q(β, σ;θ(s)) =
n∑

i=1

K∑
k=1

τ
(s)
ik logN (yi;βk0 + x�

i βk, σ
2
k)−

K∑
k=1

λk‖βk‖1; (5)

using a coordinate descent algorithm, with initial values (β0
k0,β

0
k) = (β

(s)
k0 ,β

(s)
k ).

We obtain closed-form coordinate updates which can be computed for each com-
ponent following the results in [13, sec. 5.4] and are given by

βm+1
kj = S

λkσ
(s)2
k

( n∑
i=1

τ
(s)
ik rmikjxij

)/ n∑
i=1

τ
(s)
ik x2

ij , (6)

with rmikj = yi−βm
k0−x�

i β
m
k +βm

kjxij and S
λkσ

(s)2
k

(.) is a soft-thresholding operator

defined by [Sγ(u)]j = sign(uj)(|uj | − γ)+ and (x)+ a shorthand for max{x, 0}. For
h �= j we set βm+1

kh = βm
kh. At each MM iteration m, βk0 is updated by

βm+1
k0 =

n∑
i=1

τ
(s)
ik (yi − x�

i β
m+1
k )

/ n∑
i=1

τ
(s)
ik . (7)

Then, we take (w
(s+2)
k0 ,w

(s+2)
k ) = (w

(s+1)
k0 ,w

(s+1)
k ), (β

(s+2)
k0 ,β

(s+2)
k ) = (β

(s+1)
k0 ,β

(s+1)
k ),

rerun the E-step, and update σ2
k as follows

σ
2(s+2)
k =

n∑
i=1

τ
(s+1)
ik (yi − β

(s+2)
k0 − x�

i β
(s+2)
k )2

/ n∑
i=1

τ
(s+1)
ik . (8)

The algorithm is iterated until the change in PL(θ) is small enough. The proposed
algorithm, at each iteration, clearly guarantees to improve the optimised penalised log-
likelihood function (2); Also we can directly get zero coefficients without any thresh-
olding like in [1, 14].

3 Experimental study

In this section, a simulation is performed to assess the performance of the regularized
MoE. We consider covariate variables x generated from a multivariate Gaussian dis-
tribution with zero mean and correlation defined by corr(xij , xij′) = 0.5|j−j′|. The
response Y is generated from a normal MoE model with K = 2, p = 6 and n = 300.
The true parameters and their estimates according to three different methods are given
in Table 2. The results are averaged on 100 different data sets. We evaluate the per-
formance of the penalized MoE compared with standard non-penalized MoE, and MoE
with ridge penalty function for the gates by considering three different aspects: i)
sparcity by computing the sensitivity and the specificity (i.e, proportion of correctly
estimated zero coefficients and nonzero coefficients), ii) parameters estimation by com-
puting the MSE of parameter estimates, and iii) clustering performance via the correct
classification rate. The sensitivity/specificity results and the correct classification rates
are given in Table 1 and the MSE are given in Table 2. We can clearly see the al-
gorithm performs very well to retrieve the actual sparse support; the sensitivity and
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Sensitivity/Specificity Correct
Method Expert 1 Expert 2 Gating classification

S1 S2 S1 S2 S1 S2 rate
MoE 0.000 1.000 0.000 1.000 0.000 1.000 89.57%(1.65%)

L2 0.000 1.000 0.000 1.000 0.000 1.000 89.62%(1.63%)

Lasso+L2 0.720 1.000 0.776 1.000 0.815 0.615 87.76%(2.19%)

Table 1: Sensitivity (S1)/Specificity (S2) and clustering error summaries.

Mean square error
Component True value MoE L2 Lasso+L2

0 0.0093(.015) 0.0094(.015) 0.0092(.015)

0 0.0112(.016) 0.0114(.017) 0.0018(.005)

1.5 0.0098(.014) 0.0098(.015) 0.0106(.012)
Expert 1 0 0.0099(.016) 0.0099(.016) 0.0019(.005)

0 0.0108(.015) 0.0109(.016) 0.0010(.004)

0 0.0094(.014) 0.0094(.014) 0.0021(.007)

1 0.0081(.012) 0.0082(.012) 0.0117(.015)
0 0.0342(.042) 0.0338(.042) 0.0585(.072)
1 0.0355(.044) 0.0354(.044) 0.1583(.157)

−1.5 0.0222(.028) 0.0221(.028) 0.1034(.098)
Expert 2 0 0.0253(.032) 0.0252(.031) 0.0033(.013)

0 0.0296(.049) 0.0294(.049) 0.0039(.019)

2 0.0286(.040) 0.0287(.040) 0.0432(.056)
0 0.0195(.029) 0.0195(.029) 0.0043(.017)

1 0.1379(.213) 0.0936(.126) 0.2315(.240)
2 0.2650(.471) 0.1225(.157) 0.8123(.792)
0 0.0825(.116) 0.0641(.086) 0.0404(.032)

Gating 0 0.1466(.302) 0.1052(.196) 0.0501(.050)

−1 0.1875(.263) 0.1129(.148) 0.7703(.760)
0 0.1101(.217) 0.0803(.164) 0.0656(.066)

0 0.0806(.121) 0.0610(.095) 0.0175(.018)

σ 1 0.0033(.004) 0.0035(.004) 0.0027(.003)

Table 2: MSE of parameter estimates for MoE, L2, Lasso+L2.

specificity results are better for the proposed Lasso+L2 regularisation. The specificity
for the second gating function is less than for the two alternatives can be attributed to
the fact that the model is dedicated to sparse models, rather than non-zero coefficients.
The same thing can be observed for the MSE which means that the algorithm can also
perform density estimation with a reasonable loss of information due to the bias in-
duced by the regularisation. The same thing can be said for clustering performance if
the objective is to partition the data into clusters. Finally, note that, for choosing the
tuning parameters and number of components we can use the modified BIC with a grid
search scheme as in [6]. The modified BIC performs reasonably well in our simulation.

We now analyze a real data set consisting of baseball salaries from the Journal of
Statistics Education (see also [5]). We compare our results with the non-penalized MoE
models in different criteria: the average mean square error (MSE) between observation
values of the response variable and the predicted values of this variable; we also consider
the correlation of these values. [5] used this data set in the analysis, which included an
addition of 16 interaction features, making in total 32 predictors. The columns of X
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were standardised to have mean 0 and variance 1. Table 3 shows the results in terms
of MSE, and R2. We also show the obtained number of zero coefficients in the experts
and the gating network. These results clearly suggest that the proposed algorithm with
the Lasso+L2 penalty also shrinks some parameters to zero and have an acceptable
results when comparing with MoE.

R2 MSE Exp.1 Exp.2 Gating network
MoE 0.8099 0.2625(.758) 0 0 0

Lasso+L2 0.7971 0.2880(.649) 22 20 19

Table 3: Results for Baseball salaries data set.

4 Conclusion and future work

We proposed a regularised ML inference for the MoE model which encourages sparcity,
and developed a blockwise EM-MM algorithm which monotonically maximise this reg-
ularised objective towards at least a local maximum, while avoiding standard using
approximations. The algorithm includes one-by-one parameter updates using coordi-
nate descent avoiding matrix inversion. The results on both simulations and real-data
(including further experiments which can not be included in the paper for a lack of
space) confirm the effectiveness of the proposal. The next step is to perform addi-
tional model selection experiments and to consider the multivariate case and the full
high-dimensional setting.
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