
Boolean kernels for interpretable kernel
machines

Mirko Polato and Fabio Aiolli

University of Padova - Department of Mathematics
Via Trieste, 63, 35121 Padova - Italy

Abstract. Most of the machine learning (ML) community’s efforts in the
last decades have been devoted to improving the power and the prediction
quality of ML models at the expense of their interpretability. However,
nowadays, ML is becoming more and more ubiquitous and it is increasingly
demanded the need for models that can be interpreted. To this end, in
this work we propose a method for extracting explanation rules from a
kernel machine. The core idea is based on using kernels with feature
spaces composed by logical propositions. On top of that, a searching
algorithm tries to retrieve the most relevant features/rules that can be
used to explain the trained model. Experiments on several benchmarks
and artificial datasets show the effectiveness of the proposed approach.

1 Introduction

The lack of interpretability of many machine learning methods, e.g., kernel ma-
chines and (deep) neural networks, makes hard their application in scenarios
in which explanations are as important as the prediction quality, for example,
support systems for physicians and recommender systems. Also the European
Parliament in one of the Articles of its “General Data Protection Regulation” [1]
underlines the need of explanations when a decision regarding a user is taken
automatically by a machine. In the past, some efforts have been devoted in order
to alleviate this black-box nature of ML models [2, 3]. In this work we focus on
interpreting kernel machines, in particular SVM. In the literature [2], most of the
proposed methods for extracting explanation rules from SVM are based on the
definition of regions in the input space that are then converted into if-then-else
rules. Here, we propose a different approach which works directly in the feature
space. Specifically, by means of Boolean kernels, which have shown state-of-the-
art performance in binary classification tasks [4], the data are mapped onto an
easy-to-interpret feature space, and in such space an SVM is trained (BK-SVM).
Since the feature space of a BK-SVM is composed of Boolean rules, it is possible
to give a human-readable interpretation of the solution of the SVM by extracting
the most influential rules in the decision. So, the main contribution of this work
is two-fold: (i) first we present a new Boolean kernel which creates a feature
space made of (potentially) all possible monotone DNF formulas over the input
variables; (ii) then, we propose an algorithm for extracting from the BK-SVM
the most relevant rule which can be used to interpret the solution. Throughout
the paper we consider binary valued datasets for binary classification tasks. For-
mally, T ≡ {xi, yi}Li=1 is a training set where ∀i,xi ∈ {0, 1}n and yi ∈ {+1,−1}.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

177

x
φ(x)

x1

x2

xn-1

xn

x1 ⊗ x2

x1 ⊗ xn

x2 ⊗ xn

xn-1⊗ xn

z
φ(z)

z1

z2

zn-1

zn

z1 ⊗ z2

z1 ⊗ zn

z2 ⊗ zn

zn-1⊗ zn

κ(x, z)

Fig. 1: Depiction of a generic Boolean (operator ⊗) kernel of arity 2: firstly the input vectors
are mapped into the feature space which is formed by all formulas with arity 2 (without repe-
tition). Then, the kernel is computed by “matching” (dotted lines) the corresponding features.
Arrows from the input vectors to the feature vectors indicate when a variable influences the
formula.

We refer to generic n-dimensional Boolean vectors with x and z, and with the
notation xb we indicate the component-wise exponentiation, i.e., xb11 x

b2
2 · · ·xbnn .

Finally, the notation J·K represents the indicator function.

2 Boolean kernels

In the literature, the term Boolean kernel has been used as a synonym of the so-
called DNF kernel [5]. However, in a recent work [4] a broader definition has been
provided: Boolean kernels are kernel functions which take binary vectors as input
and apply the dot-product in a feature space where each dimension represents
a logical proposition over the input variables. The general idea behind Boolean
kernels is depicted in Figure 1.

Monotone Conjunctive kernel One of the simplest Boolean kernel is the
monotone Conjunctive kernel (mC-kernel) [4]. As the name suggests, its feature
space is composed by all conjunctions of exactly c different input variables,
where c is an hyper-parameter. Hence, the mC-kernel of arity c between x and
z computes the number of true conjunctions of c literals in common between x
and z. Formally, the embedding of the mC-kernel of arity c is given by φc

∧ : x 7→
(φ

(b)
∧ (x))b∈Bc , where Bc = {b ∈ {0, 1}n | ‖b‖1 = c}, and φ

(b)
∧ (x) = xb. The

dimension of the resulting feature space is
(
n
c

)
. Thus, the mC-kernel of arity c

is computed by κc∧(x, z) =
(〈x,z〉

c

)
.

Monotone Disjunctive kernel Similarly to the mC-kernel, the monotone
Disjunctive kernel (mD-kernel) [4] of arity d between x and z computes the
number of true disjunctions of d literals in common between x and z. Thus,
the embedding of the mD-kernel is the same as the mC-kernel, however the
logical interpretation is different since the combinations of variables represent
disjunctions. Formally, the embedding of the mD-kernel of arity d is given by

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

178

φd
∨ : x 7→ (φ

(b)
∨ (x))b∈Bd

, with φ
(b)
∨ (x) = J〈x,b〉 > 0K. The corresponding

mD-kernel is computed by

κd∨(x, z) =
(n
d

)
−

(n− 〈x,x〉
d

)
−

(n− 〈z, z〉
d

)
+

(n− 〈x,x〉 − 〈z, z〉+ 〈x, z〉
d

)
. (1)

The full derivation of Equation (1) is presented in [4].

3 The feature space of monotone DNFs

As described in [4], by composing the mC-kernel and the mD-kernel it is pos-
sible to compute the mDNF-kernel (monotone Disjunctive Normal Form) in
which the feature space is composed by monotone DNF formulas of the input
variables. A shortcoming of the mDNF-kernel defined in such way is that the
mDNF formulas have a fixed form, that is, they are composed by disjunctions
of d conjunctive clauses made of c literals. In order to overcome this limi-
tation, we first create a feature space composed by all conjunctions up to a
certain arity C, by concatenating the feature spaces of κc∧ for c ∈ [1, C], that is
φCΣ(x) = (φ1

∧(x), φ2
∧(x), . . . , φC∧ (x)). The corresponding kernel can be implicitly

computed [6] by κCΣ(x, z) =
∑C

c=1 κ
c
∧(x, z). Now, by composing φCΣ with φd∨ (for

some d) we obtain a feature space constituted of all possible mDNFs made of d
conjunctive clauses of at most C literals. This kernel can be calculated by replac-
ing 〈x, z〉 (i.e., the linear kernel) with κCΣ(x, z) and n with

∑C
c=1

(
n
c

)
in Eq. (1).

Finally, by summing up all these kernels with d ∈ [1, D] we obtain a kernel with a
feature space composed of all possible mDNF formulas with at most D conjunc-

tive clauses of at most C literals. Formally, κD,C
∗ (x, z) =

C∑
d=1

κd∨(φCΣ(x), φCΣ(z)),

which is a valid positive semi-definite kernel because it is a result of closure
properties [6].

4 Interpreting BK-SVM

One of the biggest advantages of using Boolean kernels is that the features
in the embedding space are easy to interpret, and this characteristic can be
leveraged to explain the solution of a kernel machine, e.g., SVM. In particular,
the most influential features (i.e., logical rules) in the solution can be extracted
in order to provide a human-readable interpretation of the decision. From the
Representer Theorem [6] we know that the solution of an SVM can be written
as w =

∑
i∈S yiαiφ(xi), where S is the set of support vector indexes, and αi ≥ 0

are the contributions of the support vectors to the solution. Hence, the weight
associated to a feature f , i.e., a Boolean rule, inside the feature space induced
by φ can be calculated by:

wf =
∑
i∈S

yiαiφf (xi) =
∑
i∈S

yiαiJf(xi)K =
∑
i∈S+

αiJf(xi)K−
∑
i∈S−

αiJf(xi)K, (2)

where S+ (resp. S−) is the set of positive (resp. negative) support vector
indexes, and

∑
i∈S+ αi =

∑
i∈S− αi. Our goal is to find the formula f such

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

179

to maximize the value wf . It is easy to show that, if (i) the set is linearly
separable, (ii) the target concept is defined by a formula g, and (iii) the feature
space contains g, then g = argmaxf wf =

∑
i∈S+ αi. It is noteworthy that

wf is maximized for every f consistent with the support vectors, and hence the
best formula could not be unique. In the case of non-separability, finding the
rule that maximizes the value of wf is still a good heuristic since it is a way to
minimize the loss with respect to the decision function.

4.1 Rule extraction via Genetic Algorithm

In order to find the best rule, we adopted (as a proof of concept) a genetic
algorithm (GA) based optimization. The design choices for the GA are described
in the following:

population it is formed by 500 randomly initialized individuals, i.e., mDNF
formulas with at most D conjunctions made of at most C literals;

fitness given a formula f , its fitness is equals to the weight wf as in Eq. (2);

crossover given two mDNF formulas f and g, the crossover operator creates a
new individual by randomly selecting a subset of the conjunctive clauses
from the union of f and g while keeping the number of clauses ≤ D.

mutation given a mDNF formula, the mutation operator randomly performs
one out of the following three actions: (i) removing one of the conjunctive
clauses (when applicable); (ii) adding a new random conjunctive clause;
(iii) replacing a literal in one of the conjunctions;

selection we adopted the elitist selection (20%) strategy to guarantee that the
solution quality will not decrease.

5 Experiments

The experiments have been performed1 on 10 binary datasets in which the num-
ber of ones is the same for every instance. This is not a limitation since, given
a dataset with categorical features, each instance can be converted into a fixed
norm binary vector by means of the one-hot encoding [7]. The artificial datasets
(indicated by the prefix art-) have been created in such a way that the posi-
tive class can be described by a mDNF formula over the input variables. The
details of the datasets are summarized in Table 1. We evaluated the proposed
algorithm in terms of the most used metrics for evaluating explanation rules [2],
namely, comprehensibility, accuracy and fidelity. Comprehensibility is the ex-
tent to which the extracted representations are humanly comprehensible. In
our case we can assume high comprehensibility because the retrieved rules are
simple (and short) logical propositions over the input binary variables. The ac-
curacy of a classification function (or rule) f over the test set Tts is equal to
|{(x, y) ∈ Tts | Jf(x) ⇐⇒ y = +1K}|/|Tts|. The fidelity over the test set Tts of a

1All the experiments have been implemented in python 2.7 using the modules Scikit-Learn,
MKLpy and pyros available in the PyPi repository.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

180

Dataset #Inst. #Ft. Rule

tic-tac-toe* 958 27 mDNF, d = 8, c = 3
monks-1* 432 17 (x0 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x5) ∨ x11

monks-3* 432 17 mDNF, d = 7, c = 2
art-d2-c4 1000 30 (x11 ∧ x9 ∧ x1 ∧ x14) ∨ (x27 ∧ x17)
art-d3-c3 1000 30 (x3 ∧ x28) ∨ x27 ∨ (x14 ∧ x7 ∧ x26)
art-d4-c2 1000 30 x3 ∨ (x0 ∧ x7) ∨ (x5 ∧ x9) ∨ x8

art-d4-c3 1000 30 (x25 ∧ x21) ∨ (x15 ∧ x5 ∧ x19) ∨ (x0 ∧ x26) ∨ (x8 ∧ x21 ∧ x20)
art-d5-c4 1000 30 mDNF, d = 5, c ≤ 4
art-d5-c5 1000 30 mDNF, d = 5, c ≤ 5

Table 1: Information of the datasets: number of instances, number of binary features and
the rule which describes the positive class. (*) means that the dataset is freely available in the
UCI repository.

SVM Best Rule Fidelity

Dataset Train Test Train Test Train Test GA #Gen.

tic-tac-toe 100.00
±0.00

98.33
±0.87

100.00
±0.00

100.00
±0.00

100.00
±0.00

98.33
±0.87

358.00
±156.81

monks-1 100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

9.20
±3.37

monks-3 100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

230.40
±385.79

art-d2-c4 100.00
±0.00

98.87
±0.50

99.89
±0.23

99.40
±0.80

99.89
±0.23

99.07
±0.68

10.60
±3.55

art-d3-c3 100.00
±0.00

97.13
±1.13

100.00
±0.00

100.00
±0.00

100.00
±0.00

97.13
±1.13

14.60
±7.34

art-d4-c2 100.00
±0.00

97.87
±0.75

100.00
±0.00

100.00
±0.00

100.00
±0.00

97.87
±0.75

15.0
±2.28

art-d4-c3 100.00
±0.00

95.07
±1.34

100.00
±0.00

100.00
±0.00

100.00
±0.00

95.07
±1.34

35.20
±19.36

art-d5-c4 100.00
±0.00

96.00
±0.67

99.71
±0.57

99.20
±1.60

99.71
±0.57

96.00
±0.67

340.40
±338.10

art-d5-c5 100.00
±0.00

94.27
±0.85

99.97
±0.06

99.40
±0.33

99.97
±0.06

94.20
±0.85

61.20
±17.68

Table 2: Experimental results averaged over 5 runs: for each dataset the accuracy (%) in
both training and test is reported for SVM and for the extracted rule. It is also reported the
fidelity of the rule w.r.t the SVM as well as the average number of generations required to the
GA to find the best rule.

rule f w.r.t. a decision function h learnt by a learning algorithm is computed by
|{(x, y) ∈ Tts | Jf(x) ⇐⇒ h(x) = +1K}|/|Tts|. For each dataset the experiments
have been repeated 5 times by using different 70%-30% training-test splits. In
each experiment an hard-SVM with the kernel κ5,10

∗ has been trained over the
training set and then the most relevant formula has been extracted using the
GA (described in Section 4.1) with C = 5, D = 10, the mutation probability set
to 0.6 and the maximum number of generations set to 103. It is worth to notice
that the computational time for calculating κ∗ is in the order of milliseconds for
each dataset.

5.1 Results

The achieved results are summarized in Table 2. As evident from the table, in
every dataset the best rule extracted by the GA is indeed the one which (almost
always) explains the label and the decision of the SVM (the fidelity is very high).

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

181

t-
t-
t

m
on

ks
-3

d5
-c
4

d5
-c
5

85

90

95

100

A
cc
u
ra
cy
(%

)

t-
t-
t

m
on

ks
-3

d5
-c
4

d5
-c
5

0

500

1,000

#
ge
n
er
at
io
n
s

w/ SVM

w/o SVM

Fig. 2: Comparison between the GA guided by the SVM (w/) and w/o the SVM. The plot
on the left shows the average accuracy on the test set, while the plot on the right shows the
average number of generations required by the GA to find the best rule.

Moreover, despite the huge search space (on average 1045 formulas), the number
of generations required to find the best rule is very low. To highlight how the
weights learned by the SVM are indeed useful to guide the research of the GA
(through the fitness), we also tried to retrieve the best formula by using the
same GA with αi = 1/L,∀ i ∈ [1, L]. In this case the fitness corresponds to
the training accuracy. Figure 2 shows the comparison between the GA w/ and
w/o SVM. From the figure, it is evident that using the GA guided by the SVM
ensures that a better rule will be found with fewer generations. It is also worth
to mention that computing the fitness over all the training set is significantly
less efficient than calculating it for the support vectors only.

6 Future work

In the future we aim to test this approach on real-world datasets (both categori-
cal and real-valued) which are generally noisy and in which we cannot assume of
explaining the solution with just one rule. Moreover, a more in-depth theoretical
analysis need to be conducted in order to further support the empirical results.
Finally, other strategies for extracting the best rules should be tested.

References

[1] Bryce Goodman and Seth Flaxman. Eu regulations on algorithmic decision-making and a
“right to explanation”, 2016. presented at 2016 ICML WHI 2016, New York, NY.

[2] Nahla Barakat and Andrew P. Bradley. Rule extraction from support vector machines: A
review. Neurocomputing, 74(1-3):178–190, 2010.

[3] João Guerreiro and Duarte Trigueiros. A unified approach to the extraction of rules from
artificial neural networks and support vector machines. In ADMA, pages 34–42, 2010.

[4] Mirko Polato, Ivano Lauriola, and Fabio Aiolli. Classification of categorical data in the
feature space of monotone dnfs. In ICANN, pages 279–286, 2017.

[5] Ken Sadohara. Learning of boolean functions using support vector machines. In ALT,
pages 106–118, 2001.

[6] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004.

[7] David Money Harris and Sarah L. Harris. Digital Design and Computer Architecture.
Morgan Kaufmann, Boston, 2013.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

182

