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Abstract. Tracking arbitrary objects is a challenging task in visual com-
puting. A central problem is the need to adapt to the changing appearance
of an object, particularly under strong transformation and occlusion. We
propose a tracking framework that utilises the strengths of Convolutional
Neural Networks (CNNs) to create a robust and adaptive model of the ob-
ject from training data produced during tracking. An incremental update
mechanism provides increased performance and reduces training during
tracking, allowing its real-time use.

1 Introduction

The process of tracking the changing position of an object is a very fundamental
problem in the fields of computer vision as well as artificial intelligence and has
been studied for a long time [1, 2, 3]. It is an important task in the area of arti-
ficial intelligence and robotics, as tracking objects visually is often a prerequisite
for complex tasks. For example, a developmental robot can learn the affordance
of a manipulated object by correctly keeping track of this object’s change, while
for an autonomous car keeping track of other vehicles and pedestrians in the
streets can help planning a route and avoid collisions [4]. However, the visual
tracking of arbitrary objects in a video stream is still a difficult task because the
objects’ appearance may change over time [5].

To overcome these challenges, an object tracker needs a mechanism for identi-
fying and extracting robust features from a video stream. It also needs a flexible
method for learning a model of the object’s representation using a scarce supply
of training data and adapting it dynamically over time. Previous attempts to
provide such functionality include integrating CNNs for feature extraction and
learning the object’s visual representation. For instance, the Fully Convolutional
Network based Tracker (FCNT') [6] uses the convolutional part of VGG16 [7]
to extract visual features from a video stream and trains another small CNN
on those features. Both the final and a penultimate convolutional layer were
used as outputs since their features contribute different discriminating abilities.
To improve the quality of the object representation, other algorithms include
using pre-trained R-CNNs for feature extraction [8], training features in CNNs
on the fly [3], or creating negative training samples by taking false locations
around the correct position [9]. Nevertheless, they suffer from weak update se-
lection schemes, making them prone to using poor samples and at the same time
particularly complex, preventing any real-time application.

*The authors gratefully acknowledge partial support from the German Research Foundation
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Fig. 1: Overview over the HIOB tracking framework.

In this paper, we propose HIOB, a Hlerarchical and modular OBject tracking
framework. HIOB provides CNN-based tracking with a robust update strategy
and includes computationally effective training updates conditioned by the track-
ing confidence. Through this, HIOB provides robust tracking, particularly under
occlusion and distortion conditions, and supports real-time applications.

2 Approach

Our proposed framework extends the FCNT introduced by Wang et al. [6]. It
combines the feature extraction capabilities of a pre-trained CNN (pCNN) with
the flexibility of an on-line CNN (0oCNN), see Fig. 1 for an overview.

2.1 Initialising the Tracking

The tracking is initialised with a bounding box around the given position of
the object in the first frame F°. Next, the captured image is cropped to the
region of interest (ROI) and scaled to a fixed size of 368 x 368 for input into the
pCNN, which consists of the convolutional part of the VGG16 [7]. In particular,
the last convolutional layer conv5_.3 and an earlier layer conv4_3 are used for
feature extraction and selection, since they have been shown to describe different
visual aspects well [6]. A target heat map regression analysis is used to find the
most impactful features for locating the object and to reduce the number of
features per output layer from 512 to 384. These are used as input for the
oCNN, which consists of two convolutional layers, where the first layer includes
32 filters with a kernel size of 9 x 9 and connects with a concatenated ReLU
to the second layer, which comprises a single 9 x 9 filter. The oCNN is trained
to produce the prediction mask in the form of a 2D-Gaussian, cropped to the
object’s bounding box on a 46 x 46 array.
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2.2 Tracking

During tracking, for each following frame F*, ¢ > 0 the captured image is cropped
around the last known position of the object, scaled, and fed as input to the
pCNN. The resulting 2 x 384 features are used as input to the oCNN to produce
a 46 x 46 mask for predicting the most probable areas of the object’s position.
This mask is normalised to values within [0,1], and integrated into a mask M?
representing the full sized captured image. On this prediction mask, 1 000 candi-
dates for a new bounding box are created by altering the last predicted bounding
box randomly, according to a Gaussian distribution. For each candidate X! a
confidence value confﬁl is calculated, with A(X) being the size of X/} in pixels
and M?(j) the probability predicted by the oCNN for pixel j:

. t
conf, = W (1)

n
The candidate with the highest confidence is used as the predicted position X*
and its confidence is used as that prediction’s confidence conf’. If no candi-
date is rated above the threshold min_conf = 0.1, the previous position is kept
(Xt = X*1) and the confidence set to conf’ = 0.

Subsequent to every prediction, based on an update strategy, the sample is
considered for updating the model. In this case, the sample is appended to a
FIFO cache, storing the last 10 selected samples, and a single update iteration
of the model is executed in its current configuration. Independent of the course
of the tracking, the sample obtained from the initial frame is always kept in the
cache because it is the only reference guaranteed to be of good quality.

2.3 Update Strategies

Deciding which samples are used for updating the model is critical for the success
of the tracking. The algorithm must be able to adapt to changes in appearance
to create a solid model, but at the same time must avoid samples of poor quality
as they can corrupt the model. An update can be triggered by a prediction
with a low confidence conf’, which indicates a change in appearance. Updates
should also get enforced after a certain number of frames §; without changing
the model, in order to ensure that it is kept up to date. Utilising a lower bound
for the confidence of samples prevents poor quality data to distort the model.
In this work we explore four update strategies in detail:

e None — no updates executed to the model, serves as a baseline.
e Full — update on every frame, to explore the opposite extreme to None.

e LCC — update in case of low confidence conf’ < 0.4 combined with en-
forcing updates for ¢, = 20, based on [6].

e HGC —update in cases of high gain, thus on low but not too low confidence
0.2 < conf' < 0.4, avoiding poor samples, enforced for 6, = 20.
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Table 1: Precision (left) and success (right) on individual attributes.

Attrib. | None Full LCC HGC | None Full LCC HGC

all 0.653 0.469 0.796 0.840 | 0.489 0.356 0.541 0.566
BC 0.579 0477 0.750 0.790 | 0.424 0.363 0.503 0.519
DEF 0.561 0.452 0.646 0.733 | 0.441 0.306 0.456 0.506
LR 0.719 0.575 0.948 0.936 | 0.365 0.183 0.432 0.423

MB 0.599 0471 0.720 0.847 | 0.549 0.401 0.595 0.681
0CC 0.599 0.410 0.724 0.800 | 0.464 0.328 0.500 0.553
ov 0.608 0.344 0.773 0.814 | 0.505 0.326 0.613 0.642
SV 0.624 0.378 0.772 0.845 | 0.448 0.292 0.490 0.534

BC: Background Clutter, DEF: Deformation, LR: Low Resolution, MB:
Motion Blur, OCC: Occlusion, OV: Out of View, SV: Scale Variation

3 Results and Evaluation

In order to evaluate our framework, we tested its performance on challenging
data sets and live benchmarks and conducted in-depth case studies. In particu-
lar, we used the extension of the established Online Object Tracking Benchmark
(OOTB) by Wu et al., which includes 100 tracking sequences with up to 3872
frames and metrics for evaluation [10]. Furthermore, we participated in the
Princeton Tracking Benchmark (PTB), which includes data and tests that are
not publically available for framework or model optimisation [5].

3.1 Performance

The OOTB has been used to evaluate the four update strategies. Tab. 1 provides
the results on individual challenges included in the benchmark. Strategy None
illustrates how HIOB performs without adaptation of the model during tracking.
The poor performance by the Full strategy shows that more updates are not
necessarily an improvement. LCC produces similar results in both frameworks as
plotted in Fig. 2. The tracking experience in HIOB is much smoother compared
to the FCNT because HIOB uses a single training step on updates when the
FCNT reinitialises its network and executes 50 training steps for every update.

An analysis of failed trackings shows that the model is often disrupted by poor
quality samples in the training data. These errors are amplified by the generation
of additional erroneous predictions. HGC avoids this corruption by discarding
samples of very low confidence. The result is a higher tracking performance with
even fewer model updates. A significant performance increase can be seen for
tracking sequences that include an occlusion of the object or motion blur which
are likely to produce erroneous training samples (compare Tab. 1).

On the PTB', the HIOB framework ranks third out of 15 recent frameworks
on the RGB challenge (not using depth information). It achieved the best results
for the “animal” (72.5%) and “rigid” (78.2%) target types and ranks overall

1See http://tracking.cs.princeton.edu/eval.php for all current results.
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Fig. 2: Comparison of the FCNT and the HIOB frameworks on the conventional
metric as described in [10], using 20 pixels as the threshold for ”good”. The
LCC strategy was tested in the original FCNT implementation from [6], and
replicated within HIOB; HGC presents our proposed high gain strategy.

among the top three in all categories. A reason for not competing with the
top two for the “human” (53.1%) target type seems to be the fact that these
frameworks were particularly optimised for shapes, such as of human poses, by
using RGB-D information. The results also indicate that HIOB is particularly
good in non-occlusion (84.5%) and still quite good in occlusion cases (52.9%)
that appear to be a major difficulty for all frameworks.

3.2 Case Study

The improved strategy was developed by analysing cases of failed trackings.
Fig. 3 illustrates how poor quality samples are resulting in a model corruption. In
Fig. 3b rapid camera movement and the caused motion blur produce a misplaced
prediction. Because of the low confidence, an update is executed, training the
model to predict a position behind the tracked person (Fig. 3c). With the HGC
strategy, the updates are prevented until a less blurry image in a later frame,
seen in Fig. 3d, produces a better training sample that gradually updates the
model to recognise the person in a blurry image.

4 Discussion

A continuous model for object tracking, such as our proposed HIOB?2, can achieve
a performance comparable to models that are constantly reinitialised when the
model is utilising a smart update strategy. Our suggested strategy prevents
disrupting the model by excluding poor quality data samples and simultaneously
reduces the need for redundant updates. Overall, this leads to a significant

2The HIOB framework is available at https://github.com /kratenko/HIOB
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Fig. 3: Illustration how the LCC update strategy increasingly leads to predic-
tions of low confidence, while HGC only utilises samples with a high gain.

improvement in the tracking performance and thus opens up applications that
demand real-time and robust tracking. Future research includes further dynamic
adaptations of the CNNs’ complexities, based on the capabilities of the device
and the context, e.g. in order to integrate HIOB in interactive humanoid robots.
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