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Abstract. Kernel PCA has shown to be a powerful feature extractor
within many applications. Using the Restricted Kernel Machine formu-
lation, a representation using visible and hidden units is obtained. This
enables the exploration of new insights and connections between Restricted
Boltzmann machines and kernel methods. This paper explores these con-
nections, introducing a generative kernel PCA which can be used to gen-
erate new data, as well as denoise a given training dataset. This in a
non-probabilistic setting. Moreover, relations with linear PCA and a pre-
image reconstruction method are introduced in this paper.

1 Introduction

Generative models have seen a rise in popularity the past decades, being used in
applications as image generation [1], collaborative filtering [2] and denoising [3].
A commonly used method in these applications is the Restricted Boltzmann
Machine (RBM) [4, 5], which is a specific type of Markov random field. RBM’s
are generative stochastic artificial neural networks that learn the probability
distribution over a training dataset. Similar to RBM’s, kernel PCA is a nonlin-
ear feature extractor which is trained in a unsupervised way [6]. Probabilistic
approaches to kernel PCA are [7, 8]. Suykens proposed a new framework of
Restricted Kernel Machines (RKM) [9], which yields a representation of kernel
methods with visible and hidden units. This is related to the energy form of
RBM’s, only in a non-probabilistic setting. By leveraging the RKM representa-
tion and the similarity between RBM’s and kernel PCA, a generative mechanism
is proposed in this paper.

2 Generative Kernel PCA

In this section, the generative kernel PCA formulation is deduced. We start
from the RKM representation of kernel PCA (see equation (3.24) in [9]), that
gives an upper bound on the original kernel PCA objective function. Given the
training data {vi}Ni=1:

J̄train(hi,W ) = −
N∑

i=1

vTi Whi +
λ

2

N∑

i=1

hT
i hi +

η

2
Tr(WTW ),
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where vi ∈ R
d represents the visible unit and hi ∈ R

s the corresponding hid-
den unit for the ith datapoint, W ∈ R

d×s the interaction matrix. Similar to
RBM’s, the input patterns are clamped to the visible units in order to learn the
hidden units and interaction matrix. Stationary points of the training function
J̄train(hi,W ) are given by:

∂J̄train
∂hi

= 0 ⇒ WTvi = λhi, ∀i (1)

∂J̄train
∂W

= 0 ⇒ W =
1

η

N∑

i=1

vih
T
i . (2)

Elimination of W results in the following eigenvalue problem, which corresponds
to the original linear kernel PCA formulation [6]:

1

η
KHT = HTΔ,

where H = [h1, . . . , hN ] ∈ R
s×N , Δ = diag{λ1, . . . , λs} with s ≤ N the number

of selected components and Kij = vTi vj the kernel matrix elements. This can
easily be extended to the nonlinear case by using the feature map and kernel
trick by replacing vi by ϕ(vi) [9].

After training the model, we should be able to re-generate the visible units
of the training dataset. The hidden units hi and interaction matrix W are
assumed to be known from training the model and correspond to equations (1)
and (2). We propose the following generating objective function, by introducing
a regularization term on the visible units:

J̄gen(vi) = −
N∑

i=1

vTi Whi +
1

2

N∑

i=1

vTi vi.

Stationary points of the generating objective function J̄gen(vi) are given by:

∂J̄gen
∂vi

= 0 ⇒ Whi = vi, ∀i.

One can easily see that filling in the hidden features hi and W of the training
phase, results in the original visible units vi.

A clear link with RBM’s is visible [4, 5]. Similar as in RBM’s, there first
occurs a training phase to find the hidden units, weights and biases. Using
the conditional distributions p(h|v, θ) and p(v|h, θ), the contrastive divergence
algorithm is used to optimize the model parameters θ [10]. The algorithm makes
use of Gibbs sampling inside a gradient descent procedure to compute weight
updates. After the RBM is trained, the model can be used to generate new
samples. Given a visible unit v, the model returns a hidden unit h and vice-
versa. This mechanism is made possible by the energy function of the RBM [4, 5]:

E(v, h; θ) = −vTWh− cTv − aTh,
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with model parameters θ = {W, c, a}. The same property is present in the RKM
objective function, which is a combination of J̄train and J̄gen:

J̄(v, h,W ) = −vTWh+
λ

2
hTh+

1

2
vTv +

η

2
Tr(WTW ), (3)

which can be seen as a non-probabilistic variant of the RBM energy function.
The training phase however consists of solving an eigenvalue problem. For gen-
erating the visible units, a matrix multiplication is needed in the RKM case.

Generative kernel PCA can be used to generate new data. Instead of using the
hidden units of the training set, one could use a new hidden unit h�. Similar to
RBM’s, a new hidden unit is clamped to the model. We propose generating new
hidden units by fitting a normal distribution through the trained hidden units,
with afterwards sampling from this distribution p(h). As shown by Suykens
et al. [11], kernel PCA corresponds to a one-class LS-SVM problem with zero
target value around which one maximizes the variance. This property results
in the hidden variables most typically having a normal distribution around zero
(however for generating new hidden units other distributions are possible). The
optimization problem, whereW is obtained by the training phase in equation (2)
and h� is sampled from a normal distribution, corresponds to:

J̄gen(v
�) = −v�

T

Wh� +
1

2
v�

T

v�,

with v� generated by equation:

v� = Wh�. (4)

3 Dimensionality reduction and denoising

3.1 Linear case

In the linear case, let us take the visible units equal to the training points
vi = xi. When using a subset of the trained hidden features H ∈ R

s×N and
trained interaction matrix W (see equations (1) and (2)) to re-generate the
original dataset:

X̂ = WH = (
1

η

N∑

i=1

xih
T
i )H =

1

η
XHTH, (5)

with training dataset X ∈ R
d×N . This corresponds to minimizing the recon-

struction error ‖X− X̂‖2. The above equation is also equal to reconstruction or
denoising using linear PCA [12].

3.2 Nonlinear case

In the nonlinear case, the visible units are equal to the feature map of the data
points vi = ϕ(xi) where ϕ(xi) : R

d → R
nf is assumed to be a centered feature
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map [6]. A new datapoint x� is generated using the known corresponding hidden
unit h�. The generative equation (4) becomes:

ϕ(x�) = Wh� = (
1

η

N∑

i=1

ϕ(xi)h
T
i )h

�,

where W is the trained interaction matrix of equation (2) and hi the trained
hidden unit of equation (1). However the above equation requires ϕ(xi) in its
explicit form. Finding the value original datapoint based on the mapping in the
feature space is known as the pre-image problem [13].

To solve this problem, we propose to multiply both sides of the equation
with the feature map of every training-point ϕ(xj): (ϕ(xj) · ϕ(x�)) = 1

η (ϕ(xj) ·∑N
i=1 ϕ(xi)h

T
i )h

�, where j = 1, . . . , N . This results in the following equation:

K(xj , x
�) =

1

η
(

N∑

i=1

K(xj , xi)h
T
i )h

�, (6)

where K(xj , x
�) = (ϕ(xj) · ϕ(x�)) is a centered kernel function. Instead of

explicitly calculating the feature map of the point x�, the kernel or similarity to
the training-points is calculated. Using above equation to re-generate the kernel
matrix K of the training dataset, the denoised similarities K̂ are calculated:

K̂ =
1

η
KHTH, (7)

where H ∈ R
s×N is a subset of the trained hidden units with s ≤ N . A similar

pattern occurs as in equation (5).
We propose to use these similarities in a kernel smoother approach [14],

however other mechanisms are possible. The estimated value x̂ for x� is now
equal to:

x̂ =

∑S
j=1 K̃(xj , x

�)xj
∑S

j=1 K̃(xj , x�)
, (8)

where K̃(xj , x
�) is the scaled similarity between 0 and 1 calculated in equa-

tion (6) and a design parameter S ≤ N , the S closest points based on the
similarity K̃(xj , x

�). Kernel smoothing often works with a localized kernel like
the RBF kernel, where the second design parameter is the bandwidth σ̃.

4 Illustrative examples

Denoising example (Figure 1). In a first experiment, we consider the dataset
X ∈ R

2×500 of a unit circle with Gaussian noise σ = 0.3. Kernel PCA is applied
to the dataset, using an RBF kernel with σ̃2 = 1. Using the first 2 principal
components, the similarities with other points of the dataset are calculated us-
ing equation (7). The pre-image is determined using the kernel smoother of
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equation (8), where the S = 150 closed points are used. The same procedure
is repeated on a second dataset X ∈ R

2×500 of a unit circle and two lines with
Gaussian noise σ = 0.2 using an RBF kernel with σ̃2 = 0.2, S = 100 and
reconstruction with the first 8 principal components.
Generating new data example (Figure 2). In a first experiment, we try
to generate a new digit using the MNIST handwritten digits dataset. 50 images
each are taken for the digits 0 and 1, afterwards kernel PCA using an RBF kernel
with σ̃2 = 50 is performed on this small subsample. A normal distribution was
fitted through the hidden units of the training data and used to generate a new
hidden unit h�. Afterwards, the similarities of the new datapoint x� with the
digits 0 and 1 where calculated using equation (6) with the first 20 principal
components. The kernel smoother uses these similarities to generate a new
digit using equation (8), where S = 10. By choosing only the 10 most similar
images, only zeros are used in the smoothing. In a second experiment, the same
procedure is repeated with a subsample of 50 images for every digit using kernel
PCA with an RBF kernel with σ̃2 = 0.01, S = 100 and the first 50 principal
components. Figure 2 shows the newly generated digit, that most resembles the
digit 0 and 8. This corresponds with the average scaled similarity that is the
highest for digits 0 and 8. By using a higher S = 100, images of all digits are
used in the smoothing procedure.
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Fig. 1: Denoising method of section 3.2: (a) the first 2 principal components are
used; (b) the first 8 principal components are used.

5 Conclusion

In this paper, a generative kernel PCA is introduced. The method is based on
the RKM formulation [9]. Under this framework, kernel PCA is related to the
energy form of RBM. This paper builds upon this premise, by presenting a similar
generative mechanism. We consider two different cases. Firstly denoising, where
the hidden units of the training dataset are used. Secondly generating new data,
where new hidden units are sampled from a normal distribution. To solve the
pre-image problem, a kernel smoothing method is proposed. In future work, we
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Fig. 2: Generative method of section 3.2: (a) shows a newly generated digit 0;
(b) shows a mixing between all digits; (c) displays the average scaled similarity
to every digit of the newly generated digit in Figure (b).

want to expand the method to deep generative kernel PCA. Secondly, we aim
to extend this generative mechanism to RKM classification and regression.
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