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Abstract. One of the main open problems in the theory of margin multi-
category pattern classification is the dependency of a guaranteed risk on
the number C of categories, the sample size m and the margin parameter γ.
This paper derives a new bound on the probability of error of margin multi-
category classifiers under minimal learnability assumptions. It improves
the dependency on C over the state of the art. This is achieved through
the introduction of a new Sauer-Shelah lemma.

1 Introduction

One of the main open problems in the theory of margin multi-category pattern
classification is the dependency of a guaranteed risk on the number C of cate-
gories, the sample size m and the margin parameter γ. In this paper, we focus on
the dependency on the first parameter when minimal learnability assumptions
are made. One of the approaches to bound the risk of margin multi-category
classifiers, especially efficient in obtaining data-dependent bounds, starts with a
basic supremum inequality involving the Rademacher complexity [1]. The use
of this pathway can also be justified by the availability of a rich toolset from the
theory of Gaussian processes, as demonstrated in [2]. Using a structural result
for the Rademacher complexity, a linear dependency on C was obtained in [3],
improving upon the bound of [1]. Yet, as shown in [4], linking the Rademacher
complexity to metric entropies by the chaining method [5] and postponing the
decomposition to this level, opens up the possibility to obtain bounds sublinear
in C. Here, we precisely follow the pathway of [4]. In this context, our con-
tribution is the introduction of a new metric entropy bound generalizing that
of [6]. This leads to an improved dependency on the number of categories over
that of [4]. More precisely, we exchange a power of C by a power of ln (C) while
maintaining the same dependency on m and γ.

Formally, we consider C-category pattern classification problems with C > 3.
We denote by [[ i, j ]] the set of integers from i to j. Each object is represented
by its description x ∈ X and the categories y belong to Y = [[ 1, C ]]. We assume
that the link between descriptions and categories can be characterized by an
unknown probability measure P on Z = X × Y. Let Z = (X,Y ) be a random
pair with values in Z, distributed according to P . The available information
on P is limited to an m-sample Zm = (Zi)16i6m = ((Xi, Yi))16i6m distributed
according to Pm and we make the hypothesis that m > C. In the following, we
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distinguish the sample size m from the generic notation n which stands for a
number of points in a set that needs not be a realization of a random sample.

We consider margin classifiers that take their decisions based on a score per
category and focus on those that implement classes of functions with values in
a hypercube of RC .

Definition 1 (Margin multi-category classifiers). Let G =
∏C
k=1 Gk be a class

of functions from X into [−MG ,MG ]
C

with MG ∈ [1,+∞). For each function
g = (gk)16k6C ∈ G and x ∈ X , a margin multi-category classifier outputs
argmax16k6C gk(x).

The basic supremum inequality mentioned above involves the Rademacher
complexity of a class of margin functions built upon G. We use a variant of the
one used in [3], discarding all information irrelevant to the characterization of
classification accuracy (the values above the margin parameter γ, as well as the
ones below zero). The use of this version results in a tighter bound.

Definition 2 (Class of functions FG,γ). Let G be a class of functions satisfying
Definition 1. For every γ ∈ (0, 1], the class FG,γ is{
fg,γ ∈ [0, γ]Z : fg,γ (x, k) = max

(
0,min

(
γ,

1

2
(gk (x)−max

l 6=k
gl (x))

))
, g ∈ G

}
.

Hereafter, F is a class of real-valued functions on a measurable space T .
Now, recall the definition of the Rademacher complexity. Let Tn be a sequence
(Ti)16i6n of i.i.d. random variables taking their values in T and σn a sequence
(σi)16i6n of i.i.d. random variables uniformly distributed in {−1, 1}. Then, the
empirical Rademacher complexity of F given Tn is defined as

R̂n (F) = Eσn

[
sup
f∈F

1

n

n∑
i=1

σif (Ti)

∣∣∣∣∣ Tn

]

and its Rademacher complexity is Rn (F) = ETn

[
R̂n (F)

]
.

Another capacity measure appearing in our bounds is the fat-shattering di-
mension also known as the γ-dimension. It is defined as follows. For γ ∈ R∗+, a
subset sT n = {ti : 1 6 i 6 n} of T is said to be γ-shattered by F if there is a vec-
tor bn = (bi)16i6n ∈ Rn such that, for every vector sn = (si)16i6n ∈ {−1, 1}n,
there is a function fsn ∈ F satisfying: ∀i ∈ [[ 1, n ]] , si (fsn (ti)− bi) > γ. The
fat-shattering dimension with margin γ of the class F , γ-dim (F), is the maximal
cardinality of a subset of T γ-shattered by F , if such maximum exists. Other-
wise it is infinite. As in [4, 7], we make the following hypothesis regarding the
fat-shattering dimensions.

Hypothesis 1. We consider classes of functions G satisfying Definition 1 plus

the fact that there exists a pair (dG ,KG) ∈
(
R∗+
)2

such that

∀ε ∈ (0,MG ] , max
16k6C

ε-dim (Gk) 6 KGε
−dG .
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The capacity measures that connect Rademacher complexities with fat-shattering
dimensions are covering numbers. For any f, f ′ ∈ F and tn = (ti)16i6n ∈ T n, let

dp,tn(f, f ′) =

{(
1
n

∑n
i=1 |f(ti)− f ′(ti)|p

) 1
p , if p ∈ [1,+∞)

max16i6n |f(ti)− f ′(ti)| , if p = +∞.

Then, the covering number of F at scale ε > 0 with respect to dp,tn ,N (ε,F , dp,tn),
is the smallest cardinality of ε-nets of F , i.e., subsets F̄ ⊆ F such that ∀f ∈ F ,
dp,tn(f, F̄) < ε. The metric entropy of F is the binary logarithm of its covering
number. The distribution-free nature of metric entropy bounds calls for the use
of uniform covering numbers defined as Np (ε,F , n) = suptn∈T n N (ε,F , dp,tn).

The derivation of our bound is based on the following transitions between
the aforementioned capacity measures. We relate the empirical Rademacher
complexity of FG,γ to its metric entropy through the chaining method [5] as

R̂n (FG,γ) 6 h(N) + 2
N∑
j=1

(h(j) + h(j − 1))

√
lnN (h(j),FG,γ , d2,zn

)

n
, (1)

where N ∈ N∗ and h : N∗ → R∗+ is a decreasing function such that h(0) is
greater than the diameter of FG,γ with respect to d2,zn

. The metric entropy of
FG,γ is then related to the ones of the component function classes Gk by the
decomposition lemma (Lemma 1 in [4]):

∀p ∈ [1,+∞] , lnN (ε,FG,γ , dp,zn
) 6

C∑
k=1

lnN
( ε

C1/p
,Gk, dp,xn

)
. (2)

Finally, a Sauer-Shelah lemma upper bounds the metric entropies of the classes
Gk in terms of their fat-shattering dimensions.

Using (2) with p = 2 and the Sauer-Shelah lemma in L2-norm (Theorem 1
of [6]) in the chaining results in a sublinear dependency on C (Theorem 7 in
[4]). On the other hand, from (2) it is clear that the dependency on C in
the scale of the covering numbers disappears when one resorts to the extreme
case, that is, p = ∞. Then, using Lemma 3.5 of [8] in the chaining (based on
the straightforward relationship between the norms), a radical dependency on
C can be obtained irrespective of the value of dG . On the downside, due to
the fact that this metric entropy bound involves ln2(ε−1), the convergence rate
is worsened compared to the one obtained with an L2-norm bound involving
ln(ε−1). In the sequel, we generalize the metric entropy bound of [6] to Lp-
norms with integer p ∈ (2,∞). We show that this generalization can be used
in the chaining in combination with (2) to yield an improved dependency on C
compared to Theorem 7 of [4] (without worsening the convergence rate nor the
dependency on γ).

2 Lp-norm Sauer-Shelah lemma

Our generalization of Theorem 1 of [6] to p ∈ (2,∞) is the following one.
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Lemma 1. Let F be a class of functions from T into [−MF ,MF ] with MF ∈
[1,+∞). For ε ∈ (0,MF ], let d (ε) = ε-dim (F). For any integer p > 2, suppose

that ε ∈ (0, 2MF ] is such that d
(

ε
MF+26p2

)
is finite. Then,

lnNp (ε,F , n) 6 10p d

(
ε

MF + 26p2

)
ln

(
8p

2
7M2
F

ε

)
.

Proof sketch. The proof is essentially that of Theorem 1 in [6], with the following
main changes. First, we replace Lemma 4 of [6] by a consequence of Minkowski’s
inequality which states that for any p ∈ (2,∞), for any random variable T and
its independent copy T ′,

(E|T − T ′|p)1/p ≤ (E|T |p)1/p + (E| − T ′|p)1/p = 2 (E|T |p)1/p .

With this change at hand, the computation of the integral involved in Eq. (4) of

[6] produces the quantity Kp =
∑
k>1

kp/2k. Second, we extend the construction

of a separating tree to Lp-norm. This leads to a change in the separation of

trees now involving K
1/p
p . Third, for the probabilistic extraction, we make use

of an Lp-norm extension of Lemma 13 in [6]: Lemma 8 in [4]. To complete
the proof, we show that, since p is an integer, Kp < p2p. To this end, note
that Kp is a polylogarithm of negative order: Kp = Li−p (1/2). According to
Lemma 1 in [9], the latter can be expressed using Stirling’s numbers of the second

kind as
∑p
k=0 k!

{
p+ 1
k + 1

}
. Then Theorem 3 in [10] and the fact that for p > 2,

(p+1) < 3p/2 and pp−1 = p2p/pp+1 < p2p/4, give the claimed bound on Kp.

From (2) one can see that, based on C
1
p = 2( 1

p log2(C)), the dependency on
C in the scale parameter can be removed for all p > log2(C). Now, using
p = dlog2(C)e for C > 4, we obtain the following bound.

Lemma 2. Let G be a class of functions satisfying Definition 1. For γ ∈ (0, 1],
let FG,γ be the class of functions deduced from G according to Definition 2. For
ε ∈ (0,MG ], let d (ε) = max16k6C ε-dim (Gk). Then, for ε ∈ (0, γ] and C > 4,

lnNp (ε,FG,γ ,m) 6 10C log2 (2C) d

(
ε

2MG+52 log2
2(2C)

)
ln

(
16 log

2
7
2 (2C)M2

G
ε

)
.

Proof. The claim follows from the application of (2) and Lemma 1 together with
the choice p = dlog2(C)e and the fact that C1/dlog2(C)e < 2 and dlog2(C)e <
log2(2C).

Lemma 1 provides a metric entropy bound in O
(
d (ε) ln

(
ε−1
))

as ε→ 0, an
improvement over Lemma 2 of [4] and Lemma 3.5 of [8] (see the problem pointed
out at the end of Section 1). In addition, the formula of Lemma 2 exhibits a better
dependency on C than the one obtained in [4]. As demonstrated below, these
improvements allow us to obtain a better bound on the Rademacher complexity
of FG,γ .
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3 Improved dependency on the number of categories

Applying our new metric entropy bound along with Hypothesis 1 in the chaining
yields the following result.

Theorem 1. Let G be as in Definition 1 and, for any γ ∈ (0, 1], FG,γ be de-
duced from G as in Definition 2. Then, under Hypothesis 1, there is a function
K (dG , γ) such that for all C > 4,

Rm (FG,γ) 6 K (dG , γ)

√
C

m


(ln(C))

dG+
1
2 , if 0 < dG < 2

ln3(C) ln
3
2

(m
C

)
, if dG = 2

m
1
2−

1
dG ln3(C) ln

1
2

(
m

1
dG

ln(C)
1

dG

)
, if dG > 2.

Proof sketch. The proof closely follows that of Theorem 7 in [4]. Applying the
formula of Lemma 2 and Hypothesis 1 in the chaining formula (1) yields

R̂m (FG,γ) 6 h (N) + 2

√
10C log2(2C)

m

·
∑
j∈J

(h(j) + h(j − 1))

[
d

(
h(j)

2MG + 52 log2
2(2C)

)
ln

(
16M2

G log
2
7
2 (2C)

h(j)

)]1/2

6 h (N) + 2

√
10C log2(2C)KG

m

(
2MG + 52 log2

2(2C)
) dG

2

·
∑
j∈J

(h(j) + h(j − 1))

(h(j))
dG
2

ln
1
2

(
16M2

G log
2
7
2 (2C)

h(j)

)
, (3)

where J = {j ∈ [[ 1, N ]] : h(j) 6 γ}. Now, depending on the value of dG , we
choose N and the function h in such a way so as to optimize the dependency on
C and m. When dG < 2, (3) is upper bounded by an integral and we perform
exactly the same computations as in [4]. For dG > 2, we use similar computations
but with a different setting than that in [4]. Namely,
h(j)=γ2(N−j) log

2
7
2 (2C)

√
C

m
and N=

⌈
log2

√
m

C

⌉
, if dG = 2

h(j)=γ2
2(N−j)
dG−2

log2
2(2C)

1
dG

m
1

dG

and N=

⌈
dG − 2

2dG
log2

(
m

log2dG
2 (2C)

1
dG

)⌉
, otherwise.

In comparison with Theorem 7 of [4], Theorem 1 replaces a power of C

by a power of its logarithm. That is, C
1
4 is replaced by ln(C) for dG < 2

and
√
C by ln3(C) for dG = 2. For the final case, the comparison of the two

bounds is less straightforward, since the term C
1

dG ln
1
2 (m/C) is replaced by

ln3(C) ln
1
2

(
m

1
dG / ln(C)

1
dG

)
.
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4 Conclusion and future work

We derived a sharper bound on the Rademacher complexity of margin multi-
category classifiers under minimal learnability assumptions. Central to this is
the generalization of the metric entropy bound of [6] to Lp-norms with integer
p ∈ (2,+∞). When applied in the chaining combined with the decomposition
for metric entropies, it results in an improved dependency on C compared to
[4], without worsening the convergence rate nor the dependency on the margin
parameter γ. Following a similar pathway, future work will focus on obtaining
bounds on the Rademacher complexity of specific sets of classifiers, such as multi-
class support vector machines. The conjecture is that tighter bounds should
result from bounding directly the covering numbers of the classes of functions of
interest, i.e., without resorting to a generalized Sauer-Shelah lemma.
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