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Abstract.

In association genetics, many studies rely on univariate statistical tests to
reveal genotype-phenotype relationships, and are thus prone to miss the
situations of epistasis (interaction between genes). We designed SMMB
(Multiple Stochastic Markov blankets), and SMMB-ACO, a variant com-
bined with ant colony optimization, to detect epistasis. We compare our
proposals with three other methods. SMMB-ACO outperforms the other
methods for 50% of simulated datasets. On real datasets, the detection
ability of SMMB-ACO is close to that of the best approach, which is a
slow method, and SMMB-ACO is the fastest algorithm behind a much
less performing method.

1 Introduction
In spite of a certain amount of progress, our knowledge of the genetic architecture
of complex phenotypes (e.g., diseases) is still very limited. All studies involving
univariate statistical tests are prone to miss the situations of epistasis, where
genes (or Single Nucleotide Polymorphisms (SNPs)), interact together to deter-
mine some studied phenotype. A recent review has been dedicated to epistasis
detection [1]. Exhaustive strategies are either constrained to the exploration of
2-way interactions or are not scalable. Machine learning has contributed to this
line of investigation through various proposals: ensemble learning techniques
based on random forests, metaheuristics designed for combinatorial optimiza-
tion and Bayesian network-based methods. Even though various approaches
have been put forward to identify epistatic interactions, their common flaw is
the lack of detection power, especially when epistatic interactions involve SNPs
with no of feeble marginal effect on the phenotype. This situation is called
”pure” epistasis hereafter.

In this work, we explore the Markov blanket approach, to tackle epistasis de-
tection, and we introduce SMMB, an innovative hybrid approach which combines
Markov blanket construction with stochastic and ensemble features. Moreover,
our second proposal, SMMB-ACO, guides the stochastic sampling procedure by
incorporating ant colony optimization.
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Section 2 presents an essential property related to the Markov blanket (MB)
concept and briefly explains the shortcomings of existing MB-based algorithms
when dealing with epistasis detection. Section 3 introduces SMMB. The variant
SMMB-ACO is presented in Section 4. Experimental results and discussion are
presented in Section 5.

2 The Markov blanket concept
In a Bayesian network, the Markov blanket of a target variable T , MB(T ),
is the minimal set of variables that can render T independent from all other
variables in V, that do not belong to MB(T ): ∀ X ∈ V X⊥⊥T | MB. To
grow efficiently an optimal MB from the empty set, several proposals were made
following the pioneer algorithm IAMB [2], with variations around the design
and interleaving of the forward phase, to admit candidate SNPs into the MB
under construction, and of the backward phase, to discard false positives. The
conditional test above mentioned is one of the essential ingredients of these
methods. In this line, DASSO-MB was designed to tackle epistasis detection
[3]. The main flaws reported for these methods are the lack of detection power,
non-scalability in high-dimensional settings, poor performances for imperfect
data (not verifying the faithfulness property required by several algorithms),
and impossibility to detect pure epistasis when adding variables one at a time.
Indeed, at first iteration, performing tests of independence conditional on the
empty MB biases the whole process since a variable marginally dependent with
the target variable is included. Therefore, ”pure” epistasis cannot be detected.
SMMB palliates this issue by incorporating groups of variables instead.

3 Description of the SMMB algorithm
The data provided to SMMB consists of D, a matrix describing the p variables of
set V, for each of n observations, together with T , a vector of size n representing
the target variable. In association studies, D describes p SNPs for each of n
subjects (affected and unaffected) and T is a vector of phenotypes (affected /
unaffected status). SMMB outputs a Markov blanket for target variable T .

The SMMB algorithm involves three main procedures. The top level proce-
dure drives the construction of nmbs suboptimal Markov blankets. Each such
MB is learned from a subset DK of K variables sampled from complete dataset
D. The construction of each MB is delegated to procedure learnMB. Once nmbs

MBs are built, or a maximum number of iterations (n1) is reached, a consensus
is built from all MBs constructed so far, and is further refined.

The stochastic procedure learnMB attempts to construct a suboptimal
Markov blanket MB through a forward phase interleaved with backward phases.
Its sketch is the following:

1. Initialize MB to the empty set.

2. Sample a subset Sq of q variables from subset DK.

3. For each of the 2q − 1 non-empty subsets of Sq, compute scoreA, a score of association
with the target variable T , conditional on the current MB.
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4. Identify S, the subset that maximizes scoreA over all subsets of Sq. Assess statistical
significance for conditional independence test S⊥⊥T | MB, using type I error thresh-
old α′. If conditional independence is rejected, include S in MB and complete a full
backward phase.

5. Repeat steps 2 to 4 until the non-empty Markov blanket remains unchanged, or a
maximal number of iterations (n2) is reached while MB is still empty.

At step 4, the backward phase seeks to discard false positives from the Markov
blanket under construction. For this purpose, it iteratively examines each vari-
able X of the current MB, to identify whether there exists a subset S, S ⊆ MB,
verifying: X⊥⊥T | S. If statistical significance is assessed for conditional inde-
pendence at type I error threshold α′, X is discarded from MB.

3.1 Score of association

Step 2 of procedure learnMB has to evaluate groups of variables that are can-
didate to inclusion in MB. For this purpose, a score of association between a
group of variables and the target variable, conditional on MB, must be defined:
scoreA(S, T,MB). In the current version of the heuristic SMMB, this score is
defined as follows:

score(S, T,MB) = max
X∈S

{score(X,T,MB ∪ (S \X))},

where score(X,T,C) is the statistic returned by the conditional G-test of inde-
pendence between X and T , given set C. Thus, a group of variables candidate
to inclusion in MB is effectively considered as a whole, since variables are tested
conditional on the MB enriched with the group but one variable.

3.2 Building the Markov blanket consensus

Once nmbs suboptimal Markov Blankets (at the most) are built, a MB consensus
is constructed. In the current version of SMMB, the consensus is initialized to
the union of the suboptimal MBs. Then, this set is refined through a complete
backward phase. This backward phase follows the same scheme as in procedure
learnMB, with the notable exception that this time, correction for multiple
testing is introduced. The correction is performed based on adaptive permuta-
tions, which are less time consuming than standard permutations.

4 SMMB with ant colony optimization
In the ACO (ant colony optimization) framework applied to Markov blanket
construction, each ant is assigned a sampleDK, and applies procedure learnMB

on it. In SMMB, K variables (at top level), and q variables (in procedure
learnMB) are repeatedly drawn from the uniform law. Enriching SMMB with
an ACO feature allows to govern the sampling of variables based on probability
distribution P:

∀ X ∈ V, P(X) =
τ(X)α · η(X)β

∑
Y ∈V

τ(Y )α · η(Y )β
, (1)

where τ(X) is the pheromone rate for variable X . In the feature selection prob-
lem undelying epistasis detection, the pheromone rate τ(X) deposited by the ants
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indicates the significance of X to contribute to interactions with other variables,
to determine the target variable. η(X) intends to integrate prior knowledge (e.g.,
biological knowledge). Parameters α and β allow to adjust the relative weights
between pheromome rate and prior knowledge.

In SMMB-ACO, the top level procedure runs naco iterations. Each of these
iterations drives na ants. Thus naco×na suboptimal Markov blankets (at most)
are constructed, to further build the MB consensus. Each time a score of associa-
tion is computed for a given ant (see Section 3.1), the statistics for all conditional
independence tests triggered by this computation are memorized by the ant. At
the end of each of the naco iterations, cooperation between the ants is achieved
by enriching a global memory with the ants’ feedbacks. This global memory is
used to update τ , the vector of pheromone rates required to update distribution
P (Equation 1).

5 Experiments
SMMB and SMMB-ACO were implemented in C++, using OpenMP. The soft-
ware packages are available at https://ls2n.fr/listelogicielsequipe/DUKe/128/
and https://ls2n.fr/listelogicielsequipe/DUKe/130/. The methods compared
were run using six cores composed of biprocessors XEON 5462 2.66 GHz.

In this section, we first describe the experimental protocol. Then we present
the comparisons of SMMB and SMMB-ACO with three different approaches, on
simulated and real data sets.

5.1 Experimental settings

Simulated data setsWe used the software program GAMETES [4] to simulate
case-control data sets harbouring epistasis patterns under a disease model. We
considered three situations: M1 and M2 model 2-way epistasis, whereas M3 is a
3-way epistasis model. For each model, we generated 100 data sets (100 SNPs,
2, 000 cases, 2, 000 controls). The SNPs in epistasis were assigned the same mi-
nor allele frequency (MAF). We varied this common MAF in {0.05, 0.1, 0.2, 0.5}.

Real data sets The genome-wide Rheumatoid Arthritis (RA) data set was pro-
vided by the Wellcome Trust Case Control Consortium (see Table 1). We ran
ten executions of each stochastic method on each of the 23 human chromosomes,
and on the whole genome.

Methods compared SMMB and SMMB-ACO were compared to BEAM [5],
DASSO-MB [3] and AntEpiSeeker [6]. Each of these three methods shares a
feature with our algorithms. BEAM relies on a Bayesian framework, this time
using Monte-Carlo Markov Chains. DASSO-MB implements Markov blanket
learning. AntEpiSeeker relies on ant colony optimization. The criterion retained

2,938 controls; 1,860 cases
total number of SNPs for the 23 chromosomes 469,612
number of SNPs per chromosome min = 5,754; max = 38,867; median = 21,477

Table 1: Characteristics of the Rheumatoid Arthritis (RA) data set.
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simulations

SMMB nmbs = 100; n1 = 1, 000; K = 10

SMMB-ACO

naco = 34; na = 3; K = 10; q = 3
Parameters kept constant through all experiments:

τ initialized to 100 for each variable;
η initialized to 1 for each variable; n2 = 30
α = β = 1

RA data set SMMB nmbs = 40, 000; n1 = 100; K = 180
23 separate

SMMB-ACO naco = 10, 000; na = 4; K = 180
α′ = 0.05

chromosomes
RA data set SMMB nmbs = 50, 000; n1 = 10, 000; K = 600
whole genome SMMB-ACO naco = 8, 333; na = 6; K = 600

simulations
BEAM 1, 000 and 10, 000 iterations in burning and stationary phases

DASSO-MB α = 0.05
AntEpiSeeker 450 iterations; 1, 000 ants; α = 0.01

RA data set
BEAM

106 and 107 iterations
23 separate in burning and stationary phases
chromosomes DASSO-MB α = 0.05

& whole genome AntEpiSeeker 30, 000 iterations; 50, 000 ants; α = 0.01

Table 2: Parameter settings for the five methods compared.

for the comparison study on simulated data was the F-measure = 2/(1/recall+
1/precision), with recall = TP/(TP + FN) and precision = TP/(TP + FP ).

The parameter settings for the five methods are given in Table 2.

5.2 Results

Figure 1 shows that SMMB performs slightly better than the other methods
on model M1. SMMB also performs better than the other methods for model
M2 and MAFs equal to 0.10 and 0.50. SMMB-ACO apart, SMMB and BEAM
are always in the top 2 methods for model M3. Above all, we observe that in
half of the simulations, SMMB-ACO is one of the two best and quasi similarly
performing methods. Besides, fastest to slowest, on simulations, one encounters
DASSO-MB, SMMB-ACO / SMMB, BEAM and AntEpiSeeker (see Table 3).

In the real data sets, a pattern of epistasis is reported by SMMB or SMMB-

Fig. 1: Comparison of performances on simulated data.
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ACO if one of the sub-optimal MBs produced is retrieved in the final refined
consensus. It was necessary to run several executions of SMMB, SMMB-ACO
and AntEpiSeeker to obtain 7 putative 2-way epistatic interactions (results not
shown). Each run of stochastic software BEAM yielded these 7 interactions.
The deterministic algorithm DASSO-MB only retrieved 5 of these interactions.
Table 3 shows a decrease in running times from SMMB to SMMB-ACO. On the
whole genome set, 90% of the runs of SMMB-ACO output at least 6 of the 7
interactions (versus 80% for AntEpiSeeker which is slower than SMMB-ACO)
(results not shown). Given this performance of 90%, and since SMMB-ACO
is at least 2.8 times as fast as BEAM, it is affordable to launch several runs
of SMMB-ACO. To note, we have observed that the construction of the MB
consensus consumes between 50% and 60% of the total running time.

SMMB SMMB-ACO BEAM DASSO-MB AntEpiSeeker

simulations 30s 30s 93s 5s 469s

23 separate chromosomes
34h 13h 59h 12h 69h

(total)

whole genome 23h 19h 53h 17h 47h

Table 3: Comparison of running times.

6 Conclusion
SMMB was designed to cope with pure epistasis and imperfect data in high-
dimensional settings. Incorporating feedback on the Markov blanket learning
process via the ACO-related probability distribution allowed to enhance the
performance of SMMB. Besides, in contrast to all other Markov blanket learning
algorithms, correction for multiple testing based on adaptive permutations is
a crucial ingredient in SMMB. In spite of the computational cost entailed, we
showed that SMMB and SMMB-ACO are the top fastest in the panel of methods
compared, including at the genome scale. In addition, we showed that SMMB-
ACO frequently outperforms the other methods on the simulated data sets.
On real data sets, the detection ability of SMMB-ACO is rather close to the
optimum of the top-ranked method, a rather slow method. These promising
results support continued effort to enhance the SMMB-based approach.
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