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Abstract. Echo State Network is a particular type of Recurrent Neu-
ral Networks that combines principles from kernels, linear regression and
dynamical systems. The neural network has a random initialized hidden-
hidden weights (reservoir) that keeps fixed during the training. The reser-
voir projects the input patterns onto a feature map. Here, we present a
correlation analysis between the input space and the feature map. We use
a dimensionality reduction technique (Sammon Mapping) for represent-
ing the input space. We show a correlation between the Sammon energy
and the model accuracy, which can be useful for defining good reservoir
topologies.

1 Introduction

During recent years the Echo State Network (ESN) has gained popularity in
the Neural Network (NN) community [1]. From the point of view of the ar-
chitectural design, an ESN has at least two sequential structures. First one,
it is a Recurrent Neural Network (RNN) named reservoir. Second one, it is a
memory-free supervised learning tool named readout. The reservoir structure
has a recurrent topology composed by a large number of sigmoid neurons. The
reservoir projects the input space onto a larger space. Its main role is to improve
the linear separability of the original data, and to use the recurrent topology for
memorizing input sequences. An identifying characteristic of the ESN model is
that the hidden-hidden weights are fixed during the training process. On other
words, only the parameters of the readout structure are trained. Most often,
this structure is a linear regression model [1]. Several extensions of the standard
ESN model have been introduced during the last years. Since 2007, these models
are popularly known under the framework of Reservoir Computing (RC) [2]. In
spite of the success for solving temporal learning problems, the ESN model and
the RC techniques still have some well-identified limitations. Due to the reser-
voir weights are deemed fixed during the training process, then the reservoir
initialization can impact on the final model’s performance. Some attempts for
initializing the reservoir have been introduced [1, 3, 4]. However, as far as we
know none of them have became popularly accepted in the community.

In this short article, we present an analysis about the correlation among
a representation of the input space, the feature map (projected points by the
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reservoir) and the model accuracy. We evaluate the following work hypothesis:
a “good” reservoir projects the points of the input space in a map which pre-
serves some aspects of the topology of the input space. Hence, we evaluate the
performance of a reservoir matrix that minimizes a mapping between a linear
representation of the input space and the feature map. For evaluating the sim-
ilarity between the input space and the feature map we use a dimensionality
reduction technique named Sammon mapping [5]. We solved the dimensionality
reduction problem using the Particle Swarm Optimization (PSO) metaheuris-
tic [6, 7]. We show that exists a correlation between the Sammon energy and
the ESN accuracy prediction, which can be helpful for the community in order
of defining the initial reservoirs of the ESN model.

The rest of the article is organized as follows. Next section presents the ESN
model and the dimensionality reduction technique. Section 3 introduces our
contribution. We present the experimental results in section4. The paper ends
presenting a discussion and future works.

2 Background

2.1 Formalization of the Echo State Network

Let be Win a matrix that collects the input weights. The weights among neurons
in the reservoir are collected in the reservoir matrix W. The readout parameters
are collected in a matrix Wout. The reservoir state is defined as:

x(t) = f(Winu(t) + Wx(t− 1)), (1)

and the ESN output is:
o(t) = g(Woutx(t)), (2)

where f(·) is a contractive function (Lipschitz function) and g(·) is the identity
function. Only the parameters Wout presented in (2) are adjusted using a batch
ridge regression [1]. The model accuracy depends of several factors that include
the Echo State Property (ESP) [8, 9, 10], reservoir size [11], input scaling fac-
tor [12], sparsity of reservoir weights matrix [1, 11]. In the last years, several
variations of the original RC models have been developed. Some models present
variations in the type of topology, for example [13, 14]. Other models focus
in the non-linear transformation of the input space, for instance deep layered
reservoirs were analyzed in [15, 16], and other RC models have different type of
reservoir neurons, for example [17, 18].

2.2 Dimensionality Reduction using the Sammon Mapping

A dimensionality reduction technique represents a set of high-dimensional points
on a lower dimensional space. Each high-dimensional point is represented by a
latent low-dimensional point, in such a way that the layout of the latent points
is a “good” representation of the layout of the original space. Given a map φ(·)
between two Euclidean spaces I and R, let Li,j be the distance between two any
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points i and j in I, and let Di,j be the distance between the projected points in
R (distance between φ(i) and φ(j)). Sammon’s mapping is a nonlinear method
for dimensionality reduction of a high-dimensional data [5]. The mapped space
created by the Sammon mapping preserves the main topological characteristics
of the original space. We define the Sammon projection as the mapping that
minimizes the following energy:

E =
1∑

i<j Li,j

∑
i<j

(Li,j −Di,j)
2

Li,j
. (3)

3 Methodology

We consider a linear transformation of a time windows ∆l(t) of the input se-
quence as zl(t) = [z(t); z(t − 1); · · · ; z(t − l)], where each z(t) is a linear trans-
formation of the input pattern at time t (z(t) = Winu(t)), and the operation
[·; ·] denotes the concatenation of column vectors. The value of l is arbitrary. It
can be also defined empirically studying the periodicity of the time series. We
denote the input space as I. Let R be the space defined by the layout of points
projected by the reservoir given by expression (1). In addition, we consider the
space Z containing the points zl(t). Note that, the projected points in R are
non-linear projections of the input sequence, and the projected points in Z are
linear projections of the input sequence. The proposed method finds a reservoir
matrix W such that minimizes the Sammon’s energy computed between the
points in Z and R. As a consequence, an optimization problem emerges, the
goal is to find the matrix W such that the Sammon energy presented in expres-
sion (3) is minimized. For our experiments we used Particle Swarm Optimization
(PSO) [7]. The PSO algorithm is a popular metaheuristic for solving numerical
optimization problems. The PSO algorithm is iterative, and it starts randomly
initializing a set of feasible solutions. In the literature related to Swarm Intelli-
gence, the solutions are named particles, and the set of points is named swarm.
The algorithm updates the particles following some update rules [7]. In our
problem, each particle represents the reservoir weights. Roughly speaking, the
particles approximate to the minimum learning of the position of the best parti-
cle in the swarm, as well as they learn of their own previous steps. More details
about how to use the PSO can be read in [7], and a PSO applied for improving
an ESN was also studied in [19]. However, any other optimisation technique
can be used for minimizing the Sammon energy. Note that, we are interested in
finding a similarity between the space R and Z. In this step, we do not perform
the computation of the readout weights.

4 Experimental Results

We evaluate the proposal on three well-known benchmark problems. The first
time series data was generated by the Lorenz attractor equations. The second
benchmark dataset is the Mackey-Glass nonlinear time series (already studied
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in several RC articles for instance [8, 20, 21]). The last benchmark dataset is
the Rossler time-series. More details about these benchmark problems can be
seen in [9]. We set up the parameter of the PSO algorithm following the sug-
gestions presented in [22, 23]. We used a swarm with 24 particles, local and
global acceleration of 1.496 and inertia of 0.729. The initial ESN weights are
randomly initialized using a uniform distribution in the range of {−0.5, 0.5}. We
evaluate the standard ESN model with different topologies, for different combi-
nations of reservoir size and spectral radius values (Nr, ρ(W)). We create a grid
of values (Nr, ρ(W)) in the following domains: Nr in {30, 50, 100} and ρ(W) in
{0.2, 0.5, 0.9}. The ESN model obtains the best accuracy when the combination
(Nr, ρ(W)) is equal to (100, 0.9). We present three figures, each one contains
two curves. In the top is presented a curve with the Sammon stress function
computed with expression (3) according to the number of PSO iterations. In the
bottom, the curve shows the evolution of mean square error (MSE) according
to the PSO iterations. Figure 1 presents the results for the three benchmark
problems. These figures show a correlation between the evolution of the MSEs
and Sammon energy values. In addition, we present in table 1 the results of the
Spearman correlation test between the evolution of MSE and Sammon stress
values during the epochs of the PSO algorithm. The Spearman correlation test
measures how two variables are related to each other. The null hypothesis of the
test specifies that does not exist a correlation between the two data sequences.
According to the Spearman rank presented in table 1 (a perfect correlation is
presented when the rank is ±1), in all the cases we reject the null hypothe-
sis. Then, we accept the alternative hypothesis (correlation between MSE and
Sammon error).

Table 1: Spearman’s correlation test between the MSE and Sammon’s stress
error during the pre-training of SAM-ESN.

Dataset
Correlation

Spearman rank Null hypothesis Correlation type
Lorenz 0.6390832 Rejected Strong positive

Mackey-Glass −0.4517169 Rejected Weak negative
Rossler 0.5884516 Rejected Strong positive

5 Conclusions

So far as we know, it does not exists a metric for assessing the quality of the
reservoirs. In general, the quality of the model is given by the accuracy of the
ESN predictions (including the readout structure). In this paper, we present
an attempt for assessing the reservoir quality. We consider a dimensionality
reduction technique named Sammon Mapping. The quality of the reservoir is
measured using the Sammon energy, which is computed using points from a
linear transformation of the input space and the projected points by the reservoir.
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Fig. 1: Correlation between Sammon’s stress function and MSE during the PSO
optimization. The figures correspond to Lorenz dataset (top-left side), Mackey-
Glass dataset (top-right side) and Rossler dataset (bottom).

On other words, we show with empirical results that the “good” reservoirs
are the ones that project the input space on a new space with a topological
similarity. We apply statistical tools for showing a correlation between the accu-
racy of the model and the Sammon energy, when the Sammon projection error
decreases, then the MSE also decreases. In future works, we plan to analyze the
performance of other dimensionality reduction techniques. Besides, we expect
to analyze the correlation between Sammon energy and the RC accuracy when
the reservoir has other activation functions.
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